TOMITA-TAKESAKI THEORY

BRENT NELSON

1. LEFT AND RIGHT HILBERT ALGEBRAS

In this section we introduce the concept of a left and right Hilbert algebras, which we shall see has an
important connection (as far as the dynamics of a von Neumann algebra are concerned) to weights, the topic
of Section 3.

Definition 1.1. Let 2 be an involutive algebra over C with involution & — ¢* (resp. ¢ f"). We say 2 is
a left (resp. right) Hilbert algebra if 2 has a inner product (- | -) satisfying:

a. Multiplication on the left (resp. right) is a bounded operator; that is, V€ € 2 the map m;(§): n — &n
(resp. m.(&): n+— n€) is bounded on .

b (€n] €)= (n | £6¢) (resp. (0] C) = (€ | CP).

c¢. The involution map & — £* (resp. € — &°) is closable.

d. Denote by 2A? the linear span of products &n for €, 17 € 2 (note this is a subalgebra). Then A% C A
is dense.

Suppose the involution map for a left Hilbert algebra 2[ is an (antilinear) isometry with respect to the
inner product. We claim that 2l is then a right Hilbert algebra as well with respect to the same involution.
Indeed, we have

Iz ()l = el = Im&)* N = ]l = Im(€)nfll < Im(E)Mlntll = llm (€,

(where the norm is the one derived from the inner product) ergo right multiplication is bounded. Moreover,
if we define £” := &% then property (c) is immediate and (b) follows as well:

En1¢) = ((EmM*] ) = e | ¢h = (& | n¢h) = (€| ).

Thus 2( is in fact also a right Hilbert algebra.
Propety (d) implies that the converse is true as well: suppose 2 is a left Hilbert algebra such that the
involution also makes it a right Hilbert algebra. Then

((Em* 1 (€D = ((E* | 7*¢H) = (v(€m)* | ¢) = (v | ¢*én) = (¢ | ém),

ergo the involution is an antilinear isometry on the dense subalgebra 22 and therefore is an antilinear isometry
on 2. This equilalence motivates the following definition.

Definition 1.2. A left Hilbert algebra 2l whose involution is an antilinear isometry is called a unimodular
Hilbert algebra, and we denote the involution by & — £*.

Example 1.3. Let M be a von Neumann algebra with a faithful tracial state 7, then M is a unimodular
Hilbert algebra with the same involution and inner product (z | y) := 7(y*x).

Example 1.4. Let M be a von Neumann algebra and ¢ a positive linear functional. Let 2l be the quotient
of M by the subspace {z € M: ¢(z*z) = 0} and 7, the projection from M to A. Then A is a left Hilbert
algebra with involution 7, (z)* = 1, (z*) and inner product (n,(z) | n,(y)) = @(y*z).

Example 1.5. Let G be a locally compact group with left Haar measure p and recall the modular function

dc(s) is defined to be the unique positive real number such that u(-s) = dg(s)u(-) (guaranteed by the

uniqueness of the left Haar measure). Let K(G) be the space of continuous, compactly supported functions
1
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on G, then KC(G) is a left Hilbert algebra with the following structure:

/5 (t™1s) dp(t);

f( ) =dal(s -, s € G,

(€] n) = /5 u(s).

We proceed with 2 as a left Hilbert algebra. Let $) be the completion of 2, then for each £ € 2 we can
extend 7;(€) to $ so that m (&) € B(H) and 7 is a xrepresentation of 2. Then density of 2% implies that
71 (2) is non-degenerate.

Definition 1.6. The von Neumann algebra R;(2) = m;(2)"” is called the left von Neumann algebra.
If 2 is a right Hilbert algebra instead then we can define R, () = m,.(2)".

One of intial goals is show that even when 2l is merely a left Hilbert algebra we can associate to it a right
Hilbert algebra 21" C $) such that R;() = R,(2'). Consequently we will need to consider elements for
which right multiplication is a bounded operation and will need to produce a new involution. Towards this
end, we first need to study the involution more.

By property (c), the involution is closable and we denote its closure by S and the domain by ©*% ¢ H. So
S is a densely defined unbounded operator with 2 ¢ ®f. We may continue to use the notation &# = S¢ for
¢ € ©F even when ¢ ¢ . Define a new inner product on D*:

(€ 1my = (EIn)+(Sn|SE),

note the reversed order of ¢ and 7 in the second term coming from the anti-linearity of S.

Lemma 1.7.

(i) Let & € $, then & € DF iff I{&,} C A a sequence such that lim,, o ||&, — €| = 0 and {€8} is Cauchy
in 9. In which case we have

& = lim §ﬁ

n—roo

(ii) D is complete with respect to the norm induced by (- | )y and A is dense in D*.

Proof.

(i): Suppose ¢ € ¥ then (&, 5¢) C HDH is in the graph of S. Hence it is the limit of {(&,,£5)} c ADA
which implies lim,, o ||, — €]| = 0 and lim,, o ||£5, — S¢|| = 0; in particular, {¢8} is Cauchy.
Conversely, ¢ is the norm limit of {&,} C 2, whose corresponding sharp sequence is Cauchy.
But then (&,, 591) C A ® A is a Cauchy sequence in the graph of the involution map and therefore
converges to a point on the graph of S. The condition of the sequence {£,} implies this limit point
has € as its first coordinate and hence ¢ € ®F and

& = lim §ﬁ
n—roo
(ii): Let {&,} be a Cauchy sequence with respect to the norm || - ||y in D¥. Since this norm dominates the

original norm on $), we know this sequence is Cauchy with respect to the original norm and hence
converges to some ¢ € . We also know ||n*|| < ||n]|; so that {¢}} is Cauchy as well. By part (i) we
see that & € ©F and hence ©F is complete with respect to this new norm.

The density of 2l follows from its density in $ (and of course from the fact that A C DF). O

Lemma 1.8.

(i) §=8""1

(ii) There exists an antilinear densely defined closed operator F with domain D" such that
a. D" ={neH: £ D (] SE) is bounded);
b. (S€[n) = (Fnl¢), EeDf ned.

(iii) F=F~1.

(iv) A := FS is a linear positive non-singular self-adjoint operator such that D(AY?) = Dt,

(v) There exists an antilinear isometry J of $ onto itself such that:

a. (JE[Jn)=(n]f), &nesn,



(vi)
Proof.
(i):

(vi):
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b. J=J71, equivalently J*> =1,
c. JAJ=A"1,
d. S=JAYV2=A"1/2],
e. F=JA Y2 =A12],
J and A are uniquely determined by the property (v — d) and D(A'/?) = DF,

From the previous lemma it is clear that SD* = ©¥. Since the involution on 2 is exactly an involution
it is injective. Consequently if S¢ = 0 for & € D¥ then letting {£,} C A be the sequence guaranteed
by the previous lemma we have that lim,, £ = 0 € 2. But then 7, := £, converges in norm to zero
and {nf} = {¢&,} is Cauchy (with limit &). Hence 0 = 0f = lim,, &, = &. Hence S is injective and
S~ exists. Since S = S~ on 2, this holds on all of DF.

The operator F' is merely the adjoint of S. From Proposition X.1.6 in Conway [1] (after making the
necessary changes to account for the antilinearity of .S) we see that F' is densely defined, closed, and
with a domain given precisely by (it — a). The reversal of the vectors in (it — b) is a consequence of
the antilinearity. Also, F' = F~! follows from S = S~

: Define A = F'S, then A is nonsingular as a consequence of S and F' being invertible and linear as

the composition of two antilinear maps. Note that D(A) = {¢ € D¥: S¢ € D"}. For any £ € DF we
have

(AL &) = (FSE| &) = (5S¢ | 5¢) = [15¢]l > 0,
ergo A is positive. A simple computation shows that A C A*, i.e. that A is symmetric. Now,
suppose (&, A&,) — (£0,70). Then
= (A(fn - gm) | &n — gm) < ||A§n - Afm””&n - §m||7
ergo {S¢,} is a Cauchy sequence. By the previous lemma we then have & € ©* and lim,, S¢,, = S¢&.
Hence (5S¢, AS,) = (S€,, F'SE,) — (S&),n0) and by the closedness of F' we know 19 = F'S§y = A&

and hence A is closed. It then follows from Corollary X.2.9 in Conway [1] that A is self-adjoint if
ker(A +4) = 0. But this is true since for example if £ € ker(A — i) \ {0} then A& = i and hence

IAE]]? = (AL | A) = —i(AE | §).
Since A is nonsingular ||A£[|? # 0 but (A€ | €) € R by the positivity of A, a contradiction. Similarly

ker(A 4+ i) = 0 and so A is self-adjoint. Finally, S = JAY? for some isometry .J by the polar
decomposition. Then the equality of the domains is immediate.

: Let J be as in the polar decomposition of S as above. It is antilinear since S is and hence (a) follows.

Since S = S~ we have
JATYV2 771 = 5=t = JS = J2AY/2,

We already know A is positive and self-adjoint so A'/? and (after a small computation) JA~Y/2J~1
is as well. The uniqueness of the polar decomposition and the above equality then implies J2 = 1 or
J = J~1, which is part (b).

The rest of (d) (the first equality was simply the polar decomposition) then follows: S = S~ =
A=127-1 = A=1/2] As an invertible isometry we know J* = J~! = J so that F = S§* =
(JAY2)* = A2 7% = A1/2]. The other equality in (e) follows from F = F~.

Finally, (c) follows through the use of (d) and (e):

JAT = JAVPAY2 ] = SF = A—12JJA Y2 = AT,

This is merely reiterating the uniqueness of the polar decomposition. O

Definition 1.9. The operators A and J from the above lemma are called the modular operator and the
modular conjugation of the left Hilbert algebra 2l respectively.

We will often silently invoke property (ii-b) in the above lemma, so the reader should acquaint themselves
with it presently or just remember to refer back to the lemma whenever they do not follow a particular
computation.
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The involution we need for the construction of a right Hilbert algebra will turn out to be F'. Another goal
we set for ourselves (it is in fact the main goal) is to show that Ad(A") € Aut(R;(2)) for all t € R and that
JRi ()T = R, (). We work towards the construction of the right Hilbert algebra 2’ presently (it will turn
out to be crucial for establishing the claims regarding the modular operator and conjugation).

Definition 1.10. A vector n € ) is right bounded if
sup{[|m(&)nll: € € A, €]l <1} < Fo0.
The set of right bounded vectors is denoted by B’.

Clearly n € 9B’ iff 3a € B($) such that a& = m;(&)n for all £ € 2. As this operator is uniquely determined
by n, we denote it m,.(n) := a. It is easy to verify that B’ is a subspace and that 7, is linear.

Lemma 1.11.
(1) B’ is invariant under Ry(A)’.
(ii) n,. = m-(B') is a left ideal of R (A)" and

mr(an) = am(n),  a € Ry(A), n€ B
Proof. Let a € Ry(), € € 2 and 7 € B'. Then
m(§)(an) = am(§)n = amr(n)§
hence an € B since |lam (7)é]| < [lall|x,(M|€]l. Moreover, 7, (an) = am (n). I ¢ € 2, then
T (Mm(€)¢ = m(n)(€C) = m(EQ)n = m(§)m(C)n = m(&)mr(n)C,

)
ergo m.(n) € Ry(A). The fact that 7.(B’) is an ideal follows from the above work and the comments
regarding the linearity of 7, above. U

For the sake of notation we state the following

£C:=m(&)¢, Ee, (eh;
¢n:=m(n), cen, ney.

This extended multiplication remains associative due to the commutativity of m;(2() and ,.(B’):

(£Om = (m(§)On = mr(n)m(§)¢ = m(§)mr ()¢ = E(mr(n)C) = £(¢n),

where £ € A, ¢ € §, and 1 € B’. We also recall that we may write £ in place of S¢ for ¢ € Df, and we
define 7 := F for n € ©°. As the notation suggests, this will be the involution for our right Hilbert algebra.
Speaking of which, we lastly define

A =B ND°.
Lemma 1.12.
(i) m.(B)*B CA.

(i) (mr () m2)" = mr(m2)*m1, m,ne € B
(iii) A" satisfies (a), (b), and (c) for a right Hilbert algebra.

Proof. Let n1,n2 € B’ and set ) = m,(11)*n2. From the previous lemma we know B’ is R;(2l)’ invariant and
that 7.(n1)* € Ry (A)’. Hence n € B’. Given £ € 2 we have

(€ | n) = (& | me(m) n2) = (e (m)EF | m2) = (m(EF)m | m2)
= (m(&)m | n2) = (m | m(&)m2) = (m | 7 (02)8) = (mr(n2) my | €)-

Since this last quantity is bounded by ||5]|[|£]|, we see that n € ©” and that the formula in (ii) holds.
Since ' C %B’, (a) is clear. Let £,¢ € 2 and n € 2’ then

EnlO)=Mml&)=(*In) =)

The density of 2( in $ implies this holds for &, € 2" as well so (b) holds. We already know the involution
is preclosed with closure F'. O
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Lemma 1.13. Let n € ©° and define operators ag and by with domain 2 by the following:
af =m(&)n,  bo&=mEf,  Ee
Then:
(i) ap and by are preclosed, ag C b and by C af;

(i) if mr(n) = ag* and 7,.(n°) := b*, then m,(n) and 7. (") are affiliated with Ry(A) in the sense that
every unitary in Ry(2A) commutes with w.(n) and 7. (1").

[Note: since we don’t necessarily have n € B’, 7,.(n) may not exist and hence defining ag is necessary.]

Proof.
(i): Let &,¢ € 2, then
(a0 | ) = (m(©n [ )= (n [ m(€)"¢) = (n ] €¢)
= (EOF[7) = (CFe ") = (€ I m(On’) = (€] boC),

ergo ag C bf and (after taking complex conjugates to reverse the inner product) by C afy. As ag, bg
are densely defined, we know af, b are closed and thus the previous work implies ay and by are
preclosed.

(ii): Defining 7,(n) and 7,.(n°) as above is simply another way of saying that ,.(n) is the closure of ag
and ,.(1”) is the closure of by. Given a unitary u € R;(), since uaj*u* = (uaju*)*, it suffices to

show that af is affiliated with R; ()" (by symmetry it will follow for by* as well). We first note that
if ¢ € D(af) and &1, &2 € A then

[(agmi(&1)¢ | &2) =)(m(€0)¢ | aoke) = (m(&)C | mulEa)m) = (¢ | m(&iea)m)

= (C] ao(€}&2)) = (aiC | €l€2) = (m(&1)aiC | &),

thus m(&1)¢ € D(ay) and afm(€1)¢ = m(&1)asC. Now, let u € Ry(A) be a unitary and let {m; ()}
be a net converging strongly to u. Then by the above calculation we know that for ¢ € D(af) we
have

Uaé( = h(in Wl(fa)GSC = thyn a?)ﬂ—l(fa)Ca
so that u¢ € D(af) and uaj¢ = ajuC. Hence af is affiliated with R;(2()’. O

Note that since the lemma showed that ag and b, agreed on 2, we have 7, (17°)¢ = b*€ = (ag)*€ = 7, (n)*¢
for £ € A.

Lemma 1.14. Let K(0,00) be the algebra of continuous functions on the open half line (0, 00) with compact
support. For fized n € ©, let
m(n) = uh = ku
be the left and right polar decompositions. If f € K(0,00), then f(h)n® and f(k)n are both right bounded and
o (f () = hf(h)u* € Ri()',
T (f(k)n) = kf(k)u € Ri(A)".
Proof. Let £ € 2, then since ,.(n) is affiliated with R;(A)" by the previous lemma we know h and m;(§)
commute, similarly k£ and 7;(£) commute. Hence
7€) F () = W€ = F()m ()€ = F(W)m(n)*€ = f(h)hu*¢ = hf(hyu"¢  and
m (&) f(k)n = f(B)m(&)n = f(k)m(n)§ = f(k)ku = kf (k)us.
Noting that hf(h)u* and kf(k)u are bounded (u is a partial isometry and hf(h) and kf(k) are bounded by

the functional calculus), we see that f(h)n” and f(k)n are indeed right bounded and that desired formulas
hold. O

Lemma 1.15. A and (A')? are both dense in D° with respect to the norm || - ||, defined by

Inlly := \/llnll2 + P12, 0 e D,

In particular, they are both dense in $), whence A’ is a right Hilbert algebra.
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Proof. The density of 2’ and ()% in $ will follow from their density in ©” under the norm | - ||, since this
norm dominates the standard norm and since D’ is itself dense in §. Also, we already know 2l satisfies
properties (a), (b), and (c) for a right Hilbert algebra. So the fact that (2')? is dense in §) implies it is dense
in A’ and we get property (d). (It was never mentioned before, but the containment (/)2 C 2’ is clear since

9B’ and D are closed under multiplication.)
Recall

n, = 1, (B').

Let n € ©” and recall the notation from the previous lemma. Since uh = ku we also have hu* = u*k, hence
we can move u right across h to convert it into a k and u* right across k to convert it into a h. So for each
f € K(0,00) we have

hf(h) = w*uhf(h) = u*kf(k)u = uw'm.(f(k)n) = m(u” f(k)n) € np,

Ef(k) =wu*kf(k) =uhf(h)u* = um.(f(h)n) = m-(uf(h)n) € n,.
Let g € K£(0,00) be such that f(\) = Ag(A), A > 0. Then f(h) = hg(h) € n, and f(k) = kg(k) € n, for all
f € K(0,00). Also, letting f1, fo € K(0,00) be such that f(A) = fi(A)f2(A) for A > 0 we have

f(h) = fi(h)"fo(h) € winyand f(K) = f1(k)" f2(K) € nyn,.
From Lemma 1.12(i) we know that nfn, C 7,.(A'), so f(h), f(k) € m.(A) for all f € K(0,00). Hence
f(h) = m.(m) and f(k) = m.(n2) and so f(h)n = nm and f(k)n® = 5°n2. Since D° is closed under
multiplication, we have f(h)n, f(k)n” € ©” and hence are in 2 since the previous lemma showed these
elements were right bounded. In fact we have even showed f(h)n, f(k)n> € (')2. Note that the formulas
from the previous lemma yield

m((f(k))") = me(f(k)n)* = (kf(k)u)* = u*kf(k)" = hf(h)u* = m(f(h)n’),

or simply
(f(k)n)” = f(h)*n’. (1)

Let {f.} be a positive increasing sequence in K(0,00) converging to 1 for A > 0. Then {f,(h)} and {f.(k)}
converge strongly to the range projections p and ¢ of h and k respectively. Since m,.(n)* = (uh)* = hu*,
its range projection is the same as p and the range projection of m.(n) is the same as ¢q. Suppose for the
moment that gn = and pn® = 1°. Then {f,(k)n} converges to n and {f,(h)n’} to n°. Since (f.(k)n)’ =
fn(E) n® = f(k)n°, we will have that {f,(k)n} converges to n with respect to || - ||, and hence (A)? will be
dense in ©°. To see that gy = n and p” = 1, we’ll show 7 € ¢§ and 1° € p$H. Let {m(£4)} C m(2A) be a
net converging strongly to the identity in R;(2(). Then we have

1 =limm(§a)n = limm.(n)a € ¢9;

W = lmm (&)’ = lim,(n)"€a € pS). O

Theorem 1.16. R;(A) = R,.(A).
(

Proof. We have seen 7,.(') C Ri()’, so R, (A") C Ry(A)'.

Conversely, the density of (A")? asserts that 7.(2’) is a non-degenerate *-subalgebra of R;(2()’. So the
identity in R,(2") is the identity in B($), and hence we can find a bounded net {a;} C () converging
o-strongly* to 1. Then for x € R;(2()" we have = lim a}za;, but afza; € nfn, C 7.(A"). Hence Ry(A) =
R (A). O
Lemma 1.17.

(i) A2 is dense in {DF, | - |ls}. In particular this implies that if m1,m2 € § satisfy

(55152 | m) = (n2 | 5551), §1,6 €,

then m; € D° and 0} = ns.
(i) 7-(A") =n, Nnf.

Proof.
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(i): Fix £ € A. Let {m(na)} C 7-(A’) be a net converging strongly to 1, then £ = lim, 7, (14)§ =
lim, 7 (€)ne and hence & € [m(€)$H]. Scaling if necessary, we can assume ||m;(§)|] < 1. Define a
function p,: R — R by

pa(t):=1—(1—-0)".
By the functional calculus, for any operator a with ||a|| < 1, p,(aa*) converges to the range projection
s51(a). By the above work we know s;(7m;(£))¢ = &, similarly we know s;(m;(£%))¢f = €F. So we compute

€= 51(§)6 = lim p,(m(E)m(€) )¢ = lim p,(£6H)¢;
¢ = si(m(€°)€F = lim py(m(€F)m()")€k
= lim p,(£8)&* = lim &Fp,(€€6%) = lim (pa(€%)6)".

(To convince yourself of the second to last equality, check it for p, a monomial.) Hence ¢ is the
|| - [|¢-limit of elements in A>.
If m1, mo satisfy the above relation it is the same as

(5(6361) [ m) = (m | &),
hence if [|€£¢; | < 1 then
(S(E5€) 1 m)] < [mall-
Thus the density of 22 in the domain of S, which we just established above, shows that n; € ©* and

Fipy = nj =
(ii): The containment ,.(2") C n, follows from the definition of 2’. To see that 7, (') C n¥, simply note

*

that for n € ®° we know 7,.(n) = 7, (n)** = m.(1°)*.
Conversely, suppose m.(n1) € n. Nn*. Then Iy € B’ such that m,.(n)* = 7.-(n2). For &,& € A
we then have

(€ I m) = (& &m) = (& | m(m)&) = (me(m) €| ©)
= (m(m)&2 | &) = (&m | &) = (n2 | &),
so that by part (i) 7 € ©° (hence n; € A’) and 7} = 1. Thus n, Nn% C 7,.(A"). O

Starting from the right Hilbert algebra 21’ we can dualize the above treatment of left Hilbert algebras.
The dual results will have the same numbering as their counterparts but will be marked with a prime: .

Definition 1.10’. A vector £ € §) is left bounded if
sup{ || (m¢ll: n e A, Il < 1} < 4-o0.
The set of left bounded vectors is denoted B.
We know 24 C 9B and we can associate a bounded operator m;(£) on $ to each £ € 9B in the obvious way.

Lemma 1.11'.
(1) B is invariant under Ri(A).
(ii) ny :=m(B) is a left ideal of Ry(A) and
m(a{):am(f), aERl(Ql)v 66%
The proof is similar enough to the original Lemma 1.11 that we leave it to the reader.

We once again extend multiplication to this new class of vectors so that £n := m;(€)n whenever £ € 9B and
7 € 5. Note that this is consistent with our previous extension as well. Define

A’ =B N D
Then dual of the arguments which showed 2’ is a right Hilbert algebra give us that 2" is a left Hilbert

algebra such that 2 C 2" and R;(2"”) = R,.(A")’. But the later von Neumann algebra is nothing more than
the left von Neumann algebra of 2, i.e. R;(A") = R;(A).

Lemma 1.17'.
(ii’) m(QI”) =nN n;*.
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Again, this follows by a similar argument to that of Lemma 1.17.
Tterating this dualization we would obtain

AcA =% = ...
A =" =) — ...

Definition 1.18. We say a left Hilbert algebra 2l is full if 20 = ”. Given two left Hilbert algebras 2(; and
s, we say they are equivalent if 2(f and 2[5 are isometrically *-isomorphic.

So for example, 2 and 2" are equivalent. As it does not affect the relevant von Neumann algebras, we
henceforth assume 2 is full.

Lemma 1.13". Let £ € ©% and define operators ag and by with domain A’ by the following:

agn = m-(n)€,  bon=m(n)€*,  neA.
Then:

(i) ap and by are preclosed, ag C b and by C af;
(i) if m(€) := al* and 7 (&%) := by*, then m (&) and m (& are affiliated with Ry (2).

Between us and the main objective is an onslaught of technical lemmas. Readers who are faint of heart
may wish to simply skip to Theorem 1.24, others are encouraged to get a cup of coffee.

Lemma 1.19. For each w € C\ Ry set

Yw) = Q(MI_M
(i) (A—w) ' 2 and
|m((A—w) )| <A@,  neA.
(i) (A=1 — W)~ C A and
|7 (A" =)' < vW)lIm()ll, et

Proof. We only prove (i) as the symmetry of the argument will allow (ii) to follow easily. Fix n € 21’ and set
¢ = (A —w)~'n. We know that £ € D(A) C DF with Al = w™Hw ™ — A~ "1y, Let m(€) be as in Lemma
1.13(ii), and let m;(€) = uh = ku be the left and right polar decompositions. By the dual of Lemma 1.14
we know that f(k)¢ € A for every f € K(0,00) and that

(f(k)OF = f(R)*€",  feK(0,00).
We also have
2(lw| — Re w)[|hf(R)EH|* = 2(|w| — Re w)(hf(h)*hf(h)EF | £F) =
= 2(lw| — Re w)(AL | kf (k)" kf(k)E)
< 2lwl[[kf (k)AL [k f (k)] — 2Re w(k f (k)AL | kf(K)E)

Recall algebra: (||kf(k)Ag]|—|wl||kf(k)S])? = 0so that 2jw|[[kf (k) ALk f (R)EI| < [k f (k)AL +[w]? ||k f (k)E]]*.
Continuing the above computation with this we have:

2(Jw| — Re w)l[hf (R)EF|? < [Ikf (K)AE|® + [w]* [k f (R)EN® — 2Re w(kf (k)AL | kf(K)E)
= [kf(R)(A = w)||* = [Ikf (k)nl* = I (k)knl|* = || f (k)uw” o]
= || (kyumi (&) 0> = [ (k)umi(€)nl|* = || (k)yum, (m)€F||?
= || (n) f (RYug|[* = llme (myuf (R)E]® < Nlmr () 1211 £ (R)EFII2.

2(|w| — Re w)({kf (k) kf(k)EF | &)

Thus we have established

B f(R)EH < v(@)lmr (I (h)EF]
Let

h= [ XdEO
0



TOMITA-TAKESAKI THEORY 9

be the spectral decomposition of h. Then the above inequality implies
| A aEE < [ aiEEl  f e r.s).

where ¢ := y(w)||7-(n)||. But this implies that the spectral measure d||E())&F|| is supported on [0, ¢]. Hence
E(]0,c])¢* = €F. Recall that since h is affiliated with R;(A), E commutes with R..(A") = R;(21)’. So for any
¢ € A we have

E([0,e))m(€)*¢ = E([0,))m(69)¢ = E([0, ) (Q)&F = mr (O E([0, )€F = 7m,(Q)&F = m(¢F)¢,
thus
lm(€F)¢I = 1B ([0, m(€) ¢l = I1E([0, ) hu™¢ || < ellu*¢|l = ell¢].
So ¢! is left bounded with ||m;(¢)]| < c. But then ¢ is left bounded with
Im(@N = lm (&)l = [Im (&) < ¢ = (W)l (). O

Lemma 1.20. Forn € A, set £ = (A4 5)7"'n for s > 0. Then for each (1,¢a € D(AY2) ND(AY2) we
have

(mr(m)C1 | G2) = (Jm(§)* TATY2( | A2 G) + s(Tm(€)" TAY2¢ | ATYV2G).

Proof. First suppose (1, (s € AND(A~Y2) (i.e. we take as an extra hypothesis that (1, ¢y are left bounded).
We compute

(me(m)C1 | ) = (m(G)n | &) = (] ¢iGa) = (A + )¢ | ¢f) = (FS¢ | d@) +s(¢ | )

= (561 1 S&) +5(Ci& | o) = (G | 68 +s((EF¢CHF | G2) = (1 | (€D + s((€F¢H | )

= (G| A™ 2J7Tl(§)JA§C2) +5(A7§J7Tl(f) JAECl | C2)

= (A72¢ | Jm(€)TA2G) + s(Jm (&) JA (1 | A7)

= (Jm(E) JATE( | AZG) + s(Jm(€)* TAZ(G | AT3().

Thus the formula holds in this case. Noting that both sides are sesquilinear forms (we are using the fact

that £ € 2 by the previous lemma with w = —s), it suffices to show that we can approximate ¢ € @(A1/2) N
D(AY?) by a sequence {(,} C AND(A~Y/2) in the sense that

Jim | = Gall =0, lim [AZ(C =G =0, lim JATZ(C =G =0

Now, A=12 = JFA' = JU is dense in § since A’ is and J is an antilinear isometry. So for ¢ €
D(AY?) N D(A~?) there is a sequence {1, } C A such that
(A% + A™2)¢ = lim A~z
n—oo
Set ¢, := (1 + A)~'5,. Then by the previous lemma we know ¢, € AND(A~/?) and since A1/2(AV/2 +
A=12)=1 = (1 4+ A)~! we have
¢ = (A% + A_%)_l lim A~ Zp, = lim 1+ A)"'n, = lim ¢,.

n—o00 n—o00 n—00
We are able to pass (A2 4+ A~1/2)=! through the limit as a consequence of ¢,, € AND(A~Y2) c D(AY?)N
D(AT1/2). Also

1

ASC=A3A> + A7) THA + A= A1+ A)7! lim A3y,
n—oo
= lim AZ(1+A)" 1y, = lim AZ¢,;

n—0o0 n—00
AT =ATF(AZ + A7) TN AT+ AT = (1+A)7! lim A3,
n—oo

= lim A Z(1+A) 'y, = lim A2(,. 0
n— 00

n— oo
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Lemma 1.21. Let A be a unital Banach algebra. Suppose {u(a): a € C} is a complex one parameter
subgroup of GL(A) of invertible elements in A, i.e.

u(a+ B) = u(a)u(B), a,peC.
Furthermore, assume that o — u() is holomorphic and
sup{|lu(®)||: t e R} = M < +o0.
Then for any s € R, e=%/2u(—i/2) + */?u(i/2) is invertible and

. . -1 o0 —ist

Then f is a meromorphic A-valued function with simple poles at o = in, n € Z. Let a = r + it for r,t € R.
Then e~ % = este=" and u(a) = u(r)u(it). So our hypothesis give us the bound

Proof. Fix s € R and set

S 1 .
[ f(a)|| < Me tm”“(”)”-

For R > 0 we define Cr to be rectangular curve in C with vertices +R + %, oriented counter clock-wise.

Note that for all R, Cr only encloses one pole of f(«a), namely @ = 0. The above bound implies that for
fixed t = 1, as |r| = oo we have |r|||f(a)| — 0. Hence we can compute the following limit as

I::Rli_{nOO - (a)daz/_if(r—é) dr—/_if(r—i—;) dr.

On the other hand, the residue theorem yields

I= 27rzol£1£>r%)af(a) = 1.

Recall complex analysis: e™("+%/2) = ¢™jgin(+£7/2) = +ie™ and similarly —e~"("+/2) = +je="". Hence we
have
00 —is(r—2 : 00 —is(r+4) .
e 2 i e 2 {
1=1= : —u|r—— | dr— . —u|r+ = | dr
[m eﬂ'("'fé) — 677’-(7‘7%) ( 2) [m eﬂ'("“‘r%) — 677T(T+%) ( 2)
e—% i o] e—isr e% i 0o e—isr
= —= _ dr — —u | = _ d
_i u < 2) /—oo enr _i_efm”u(r) r Z u (2) /—oo err _i_efﬂru(r) r
s 1 s ) o e~
—ile 2y —= sul = S d
z{e u( 2>+e u<2)] /_OO 67Tr_'_e_wu(r) T,
which yields the desired equality upon replacing r with t. |

We will invoke the equality established in the preceding lemma in the following equivalent form:

. [e’e) —ist
B G . s\—1 __ €
e (2> (u(—i) +e€°)" " = /oo " e_Ttu(t) dt, seR.

The relevant one parameter unitary group we will apply this to is A%; however, the fact that A is unbounded
requires some work before we can directly apply it:

Lemma 1.22. If A is the modular operator for a full left Hilbert algebra A then we have

. o0 —1ist .
eIAT(A 45 = / LN dt, seR.

7t -7t
0 €™+ e

Proof. Let
A= / ME(N)
0
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be the spectral decomposition and set E,. := E([1/r,7]) for r > 1. We apply the preceding lemma to the
unital Banach algebra A = B(E,.$) and u(a) = (AE,)", a € C to obtain

o) —ist
AN (A +et)UE, = / -
eﬂ'

——AYE, dt, s €R.
oo + et

Letting r — oo we conclude the lemma. O

We prove one final technical lemma before we arrive at the much anticipated result.

Lemma 1.23. Let A be the modular operator for a full left Hilbert algebra A. If z,y € B(9) and s € R
satisfy the following equation for every (i, (o € D(AY?2) ND(A™/?):

(G ] G2) = WAT2G | A2G) + e (yAR G [ AT3G),
then

. 0 efist ) .
ey :/ tiA”xA*” dt.
e et e—ﬂ't

Proof. For r > 1 let E, be as in the previous proof, and set A = B(B(E,$)) and define u(w) = o, where
o(z) = Az AT x € B(E:$).

Note that |lu(t)|| = 1 for each t € R since A" is unitary and that the map a — u(«) is holomorphic. By
assumption we have, for each (1,(s € 9,

(BozE (1 | G) = (A2EyA 2 E,( | G) + (A2 E.yA2 B | G)
= (|03 ByE) + oy (ByE) | G| &)

Hence

EyxE, = (0_s +*0:)(EryE,) = (¢ %0

%
By Lemma 1.21 we can invert the operator on e*/2E,yE, to obtain
B o] efzst . )
e2B.yE, = / ﬁA”ETxETA*” dt.
R A A

So letting r — oo yields the lemma. a

To simplify notation we define p,: B($)) — B($) for s € R by:
o] efist ) .
ps(x) = [m WA”:EA*” dt.
We finally are able to reap the benefit our labors.

Theorem 1.24. Let A be a left Hilbert algebra with modular operator A and modular conjugation J.
(i)
JRi(A )J Ri(2A)";
JRi(A)' T = Ry (A);
AR (A) AT = Ry ();
AR (A AT = Ry (), teR.

(i) The one parameter unitary group {A%: t € R} acts on A" and A" as automorphisms and the modular
conjugation J maps A" (resp. A') onto A" (resp. A ) anti-isomorphically in the sense that

J(&n) = (In)(JE),  &meA”.

Proof. Lemma 1.20 implies that the hypothesis of Lemma 1.23 are satisfied for = m,.(n) and y = Jm (A +
e®)~Hn)*J, hence

e2 JJm (A4 e*)™'n)* T = ps(m,(n)), neA, seR
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Thus for ¢ € A’ we have
Tps(mr(n)JC = e m((A+e®)7')*¢ = e2 (S(A +e) )¢

o0 —ist
:€%7TT(<)JA%(A+€S)_177ZTFT(C)J/ eiA“n dt,

mt —nt
s €Tt e

where we have applied Lemma 1.22 to obtain the last equality. Recalling the definition of p, we see that this
implies
e i —i i
By the uniqueness of the Fourier transform we conclude for all ¢t € R that
1

e7rt + 677rt

(JA 7 () ATIC = () J A ) =0
or
JA . (AT TC = 7, (¢) JA.

Hence ||7,.(¢)JA"n|| = | JA" . (n)A~HIC| < || JA®m.(n) AT T||||C]|, so that JA®n is left bounded and

m(JA"R) = JA™ 7. (n) A~ (2)
Now, since F' = AY2 ], J®" = D(A/?) = Dt JA®y e A”. Setting t = 0 we get JA' C A” and

m(Jn) = Jmp(n)d,  neA.
This implies that J is an anti-homomorphism on 2’

(JE)(JIn) = m(JE)In = Jm-(§)JIn = Jm(§)n = J(nf),
for £,m € A'. By symmetry we get JA®E € A/ JA” C A, and 7,.(JE) = Jm(€)J for £ € A”. Thus we have
JU =, g =

Consequently JA®n € 2A” implies A¥*n € A’ or A*QA' C A'. We get equality by considering —t. Symmetry

yeilds A% = 2", Thus (ii) holds.
Part (i) then follows easily from formula (2), part (ii), and symmetry. O

We conclude with a few results to help us with Tomita algebras in the following section.

Proposition 1.25. If A is a left Hilbert algebra, then every central element a € Ry(2) leaves DF and P
invariant and

(af)* =a*¢f,  £eD
(an)’ =a'n’,  neD

Furthermore,
JaJ = a”, AgA™ = g, teR.

Proof. Without loss of generality 2 is full. Since a € R;(A)NR;(A)’, Lemmas 1.11 and 1.11" imply n,, n’, ny,
and n; are invariant under a. Thus part (ii) of Lemmas 1.17 and 1.17" imply am, (") C 7, (") and
am(A) C m(A). Appealing to Lemmas 1.11 and 1.11" again tells us that this means a2’ C 2" and a2 C 2L.
Furthermore, if n € 2’ then
m((an)’) = me(an)* = (am,(n)" = m(n)*a* = a*me (1) = m (a7,

so that (an)® = a*n’. The density of A’ in D" implies that ©° is invariant under a and that the desired
formula holds. A similar arguments shows this is true of % as well and (a&)? = a*¢*.

Suppose a = u is a unitary, then we obtain u2l = 2 and u2l' = ' from the above work. Also, we have
Sué = u*S¢ for € € ®F. Hence uSu = S and thus

JA? = uJA2y = uJuu* Az,

The uniqueness of the polar decomposition implies J = uJu and A2 = y*A'Y/2y. That is, JuJ = u* and
Ay AT = 4. Since R;(A) NR;(A)’ is spanned linearly by unitaries, this holds for general a. 0

Lastly, we present some topological results regarding ;.
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Proposition 1.26. Let A be a full left Hilbert algebra with completion $) and the associated algebra B of all
left bounded operators.

(1) The map m: A — Ry (A) is closed with respect to the || - ||z-norm topology in ©* and the o-strong*
topology in Ry ().

(ii) The map m: B — Ry(A) is closed with respect to the || - ||-norm topology in $ and the o-strong
topology in Ri(2A).

Proof.

(i): Let {&»} C A be a net converging to & with respect to || -[|; such that {m;(£,)} converges to x € Ry ()
o-strongly*. Then for any n € 2 we have

()6 = limm, ()€a = limm (§a)n = 2n;
e (n)€F = limm, ()gh = limm (€a)™n = 1.

Hence ¢ is left bounded and x = m;(§).
(ii): The prove is the same as part (i), ignoring any statements about # and . O

Lemma 1.27. Let {x,} be a net in B(H) and x € B(H). If there exist dense subsets M and N of §H such
that lim, xo,€ = 2€, £ € M, and lim, zfn = 2n, n € N, in norm, then for any continuous bounded function
f on [0,00) we have the convergence:

lim f(2}zq) = f(a™z), lim f(zq2)) = f(axx™)
in the strong operator topology.

Proof. Let g(t) = f(t?), t € R, and h,, and h the self-adjoint operators on £ @ § give by the matrices:

0 =z (0 =z
ho"_(xa 0> and h'_<x 0).

Then lim, ho& = h¢ for any € € M & N. Then by Lemma 11.4.6 in Takesaki [2] we know {g(h,)} converges
to g(h) in the strong operator topology. Since

(0 )] =79 ey ) veBo

this gives precisely the desired result. (]

Theorem 1.28. Let A be a left Hilbert algebra with completion .
(i) If £ e A, then there exists a sequence {&,} C 2 such that

Jim =&l =0 and  [Im(&)ll < [lm (I

Hence {m(&,)} converges to m(§) in the strong® operator topology.
(ii) If & € $ is left bounded, then there exists a sequence {&,} C 2 such that

lm =&l =0 and  [m(&) < [m(©)].
Hence {m(&,)} converges to m(§) in the strong operator topology.

Proof.

(1): We can assume ||m;(€)| = 1. Since £ € D* we can find a sequence {(,,} C 2 such that [|¢,, — &y — 0
as n — o00. Set x = m(§) and x, = m(¢,). For every n € 2’ we have the convergence:

len —xnnl| =0 and  [[z"n —an) =0
since 7 is right bounded. Hence the preceding lemma applies. Consider the function f defined on

[0,0) by
1 0<t<1
1® ':{ 7z t>1.
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The lemma gives us that f(xfz,) — f(z*z) = 1 and f(zpz)) — f(xz*) = 1 strongly. Set ! =
f(z,2%)¢,. Then the dualized version of formula (1) shows that &/ € A" and (¢/)* = f(aXz,)CE.
Furthermore, we have

m(&n) = f@nay)an,  m(&)" = flanaa)y,.
Now, we have

1€ = &Il < N f(wnzp) (Cn = Ol + 1 f (zna),)E = €]
<[ =&l + 1(f (znzy,) — 1)E] — 0 as n — oo.

Similarly, we can show that ||(¢/)% — &|| — 0 and thus [|£ — &[]y — 0. Moreover, we have
Im(ENI? = llm(En)mEN |l = If (znzy)znzy, f(@nay)| < sup [tf()?] =1.

Now, approximate f by polynomials p, on [0,00) so that

1 1 1 1
Pn(t) = f(t)] < — min ) T ;0

Then set &, = pu(CaCh)Cn- Then &, € 2 and (£,)* = pa(ChGa)Ch- We get that

* * 1
1€ = &all < llpa(znar,) = f@azi)IGall < —
* * 1
1€2)F = €Dl < llpn(@hn) = flanza) ] < —
Thus ||£), — &/|ls — 0 as n — oco. Furthermore, we compute
* * * * 1
I (€)1 = llpn(@nas)znll < Ipa(@hzn) = f@azn)lzall + 1f (znzg)anll < — + 1.

n’
that || (&)l < 1 for all n. To see that {m;(&,)} converges to m;(§) in the strong* topology we note
that for each n € ' we have

Setting &, := (1 + %)71 " we finally obtain a sequence in 2 which converges to ¢ in ®* and such

n—oo

T (&) = T (MEn — T ()& = m(E)n;
m(&n) 0 = mr()éh =5 m(m)€F = m()*n.

The uniform bound on the norms of the m;(&,) and the density of 2’ then imply convergence in the
strong® topology.

: Suppose ¢ € B. Without loss of generality we have [|m;(§)|| = 1. Let m(§) = wh be the polar

decomposition and set ¢ = w*¢. Then ¢ € B and m({) = h is self-adjoint, so that ¢ € A’ and
¢ = ¢*. Using (i) we choose a sequence {(,} C A such that [|{ — (|| < 5 and [|m(¢,)|| < 1. Since
u € Ry (), there exists, by Kaplanksy’s density theorem, a sequence {n,} in 2 such that

1
H7rl(77n)|| <1 ”nnCn - uCn“ < o

Set &, = nnCn € A to get

1
Hgn =& < Mnln — uCnll + [[u(n — Ol < ﬁ?

(&)l = llmi(nm)m (Ga)ll < 1.
Using the argument at the end of part (i), we see that {m;(&,)} converges strongly to m;(§). O

2. TOMITA ALGEBRAS

The idea in this section is to produce a “self-adjoint” subalgebra 2y of both 2 and 2’ such that A” = A
and 21" = 2}, on which A’ is an entire function.

Definition 2.1. A left Hilbet algebra 2 is called a Tomita algebra if 20 admits a complex one parameter
group {U(a): a € C'} of automorphisms, not necessarily *-preserving, with the following properties:

a. The function C 3 a — (U(a)§ | n) is entire;
b. (U()§) = U(a)eF;
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c. (U(a)g|n)=(E|U(=a)n),xeC, ned;
d. (& |n*) = (U(=i)n | ©).
The group {U(a): a € C} is called the modular automorphism group of 2.

Theorem 2.2.
(i) Given a full left Hilbert algebra A with modular operator A, if we set
Ao = {ge () 2Aa"): A¢ e 2, nGZ}, (3)
neE”Z

then Ao is a Tomita algebra with respect to {A™: o € C} such that
b=, A, =2, and  JAg = Ap.
Hence, in particular we have
Ri(2p) = Ri(A) and R, (o) = Ry(A)
(ii) If A is a Tomita algebra, then with the new involution:
¢ = U(=)¢, £,
A is a right Hilbert algebra and
Ri(A)" =R ().
Furthermore, the modular operator A is the closure of U(—1).

We shall require some lemmas, the first of which characterizes when a vector belongs to the domain of a
power of a self-adjoint operator.

Lemma 2.3. Let H be a non-singular self-adjoint positive operator on a Hilbert space $). For fired a € R

and & € A, the following two conditions are equivalent:
(i) & belongs to the domain D(H®) of H®;
(ii) The $H-valued function: R > t — H“f € 9 can be extended to&ﬁ—valued function: Dy > w —
&(w) € 9 such that € is continuous and bounded on the closure D, and holomorphic in Dy, where
Dy, is the horizontal strip bounded by R and R — ia.

Proof. By considering H~! if necessary, we may assume « > 0.
(i) = (i) : f w =t — is € Dy, then D(H™) = D(H*). The inequality
[H™€|| = [|H¢| < [|(1+ H)*¢] < (1 + H)*¢]l,

shows that &(w) := H*¢ is bounded and continuous on D,. Let

H= /Ooo AE())

be the spectral decomposition and set

= J[E([0,n]) — E((0,1/n])]$.
n=1
For each n € 9M, setting n(w) := H“n, w € C, we obtain an $H-valued function n(-). From the integral

representation,
n

(Hy | ¢) = / Ned(EON| O, e

1/n
with a sufficiently large n, 7(-) is entire. Now, for every n € 9,
() [m) = (H™ €| n) = (€| Hn) = (n(—iw) | £).

Hence the function D, 3 w — (&(w) | 1) is holomorphic (since n(-) is entire) for every n € M. Noting that
M is dense in §H we see that £(-) is holomorphic on D,.
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(ii) = (i) : Suppose &(t) := H™¢ can be extended to D,. From the previous argument, we know each
n €€ D(H?) gives rise to a bounded continuous function n(w) = H “wpn on D, that is holomorphic in D,.
Consider the two functions on D,:

w (Ew) [n)  and  w e (€] H ).

Then agree when w = t € R since there £(t) = H¢. Thus the analyticity implies the agree on the entier
strip D; hence

(&) [ n) = (1 HTn),  neD(H®).
Setting w = —ia we get that
(& | Hn) = (§(=ic) [ ),  neD(HT),
which shows that £ € D((H)*) = D(H®) and that H*{ = £(—ia). O

Lemma 2.4. Let K be a compact convex subset of a locally convex vector space E. If a function z: R 3
t— x(t) € E is continuous and takes values in K, then the Bochner integral for each r > 0

Ty = \/7/ 67Tt2£li(t) dr
T JR

Proof. Since e~ > 0 and (r/m)'/2 Iz e~ dt =1, 2, € K by the compactness and convexity of K. If p is
a continuous semi-norm on F, then

p(Y2 [ertaty a—o) = (/2 [ e ta0 a0 ar) < [2 [ it ato)]

On the other hand, {(r/m)/2e="""},-, is an approximate identity; that is, integrating against it with a
continuous bounded function on R and letting » — oo is equivalent to evaluating at zero. Hence the last
expression in the above inequality converges to zero as r — co. As p was an arbitrary continuous seminorm,
we conclude that z, converges to z(0) in the locally convex topology. ]

belongs to K and lim,_, o 2, = 2(0).

Proof of Theorem 2.2.

(i): Suppose that 2 is a left Hilbert algebra nd 2y is defined in by (3). Hence ¢ = A% € 2 for all &,
so that 2y C 2A. If £ € Ap, then £ = (1+ A H) 711+ A HE € (1+ A7H 72, so that € belongs to
A" by Lemma ?7?.(ii). Hence 2y C AN’ Tt also follows that J2y = Ap. Indeed, if £ € Ay then
AT"E € AU for all n € Z (by definition of Ap. But then A™"¢ € A’ and so by Theorem 1.24.(ii),
J(A=7€) € . Thus A™(JE) = J(A"€) € A for all n € Z so that JE € Ao

Suppose ¢ € Ap. Then by Lemma 2.3, the function C 3 a — A¢ € § is entire. We want to show
that A& € g for a € C (so that U(a) = A would be a candidate for the modular automorphism
group). Let a = 7 +is and n = |s]. By Theorem 1.24, A acts on 2A” = 2 as an automorphism
and hence A™(AT¢) = AiT(A™E) € A for all m € Z since £ € Ag. Hence AE € Ay. Similarly,
A™¢ € A for all m € Z. Furthermore, for m = —n, —n — 1 we get that A™¢ € A so that m(A™¢)
is bounded. Now, for any n € 2’, we have for each m € Z

sup [, ()A™ €] < [m(A™O) .
€

So by the Phragmém-Lindeoltf theorem, we have

Iz () A™¢]| < max {[lm (A", m (A&} [In]]-

Hence A€ is left bounded. But also A¢ € D(A™) for all m € Z. In particular this is true for
m = 1. Thus A™¢ is both left bounded and contained in ®(A) = D¥: the intersection of these two
sets is precisely 21" = 21. Hence A¢ € 2, but since a was arbitrary, acting on this by A™ for any
m € 7Z leaves it in 2, ergo A¢ € Ap. So the set {A!®: o € C} leaves 2 globally invariant.

We next show the A are homomorphisms. Theorem 1.24 tells us they are when o € R, so given
&,m € Ao we know A (En) = (A™E)(An). Hence the functions o — A (€n) and a — (AE)(An)
agree on R and so by the uniqueness of the holomorphic extension are equal everywhere and hence
A" is multiplicative. Hence {A*: a € C} is a one parameter group of automorphisms of 2y, and
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given what we already know of A it is easy to see that {2y, A’: o € C} satisfies the conditions in
the definition of a Tomita algebra.
Next we verify ;2. Fix £ € 2 and r > 0 and set

& = \/7 / e T A dt.
T JR

It follows that &, € D(A™), a € C, and that after a change of variables we have

Aiagrz\/?/e—r(t—a)zAitg dt.
T JR

Then for each n € " we have

3 r —r(t—a)? i
mmang = L [ e gate a

_ \/7/ e_T(t_a)zﬂ-l(Aité-)n di = \/7 (/ e—r(t—a)2Aitﬂ_l(§)A—it dt) n,
™ JRr ™ R

so that A¢, is left bounded by Lemma 2.4 with K =??? and E =?7?. As before, this implies
Ate¢,. € A for every o € C. Consequently &, € 2p. Lemma 2.4 also gives us that

lim & =¢  lim A¥g, = lim (A%¢), = A,

r—00 r—00 T—00
so that & is approximated by &, in the f-norm. Since £ € 2 was arbitrary, this implies that 2y is
a core of A2, Furthermore, 2y = J2 is dense in JO! = D°, so that 2y is also a core of D1/,
Therefore, the closure of the f-operation in 2y agrees with S and that of the b-operation in 2l agrees
with F.

So if € € A, then m;(&,) converges to m; () o-strongly as r — 0o, so that if n € 2 is right bounded

with respect to 2y then

(€l = lim [lm(& ] < lim el | < el

which implies 7 is also right bounded with respect to 2. Since being right bounded and being in ©°
means the same with respect to either 2 or 2y we have that A = 21’. Then being left bounded is
the same with respect to either 2y or 2, and we already saw the closure of the involutions ahve the
same domain so ) = A" = 2.

: Suppose {F,U(a): o € C} is a Tomita algebra. Let A and J be the associated modular operator and

the modular conjugation, and let ) be the completion of 2. By the group property and Definition
2.1.(c) of U(e), if t € R then for each £ € A we have

[T = U#)E 1 U®)E) = (& | U=U1)8) = (€ | U(0)¢) = [I€]1*.

Hence U(t) can be extended to a unitary on $), which is denoted by U(t) again. From Definition
2.1.(a), we know a — (U(a)€ | n) is entire for any &, n € . It follows (non-trivially) that since 2 is
dense in $ the map: C 3 a +— U(«a)¢ is entire in norm for each £ € . That is, there is a sequence
of vectors {&,} € $ such that

Ul@)E =Y a"é,
n=0

where the above sum converges in norm. Now, by Stone’s theorem we can produce an infinitesimal
generator H for {U(¢t)}. That is, H is a self-adjoint (possibly unbounded) operator such that if

H= /R)\ dE(\)

is the spectral decomposition of H then

U(t) = /R ¢M B (),
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for all t € R. We express this more concisely as U(t) = exp(itH). Moreover, ©(H) is precisely the
set of vectors & for which the following limit exists:

lim 2(U() ~ 1)¢ = iHE

Since a — U(a)¢ is entire for & € 2A we know that A C D(H).
Now,
exp(iaH) = / A dE(N), aecC
R

is closed and extends U(«) for each a. In particular, it extends U(—in) so that A C D(exp(nH))
for every n € Z. We want to show A = exp H, but it suffices so show they agree on 2l and that 2 is
a common core. We already know 2l is a core for A, so it remains to show they agree on 2l and that
2 is a core for exp H. From Definition 2.1.(b), we know

SU(a)¢ = U(@)SE, Ee, aeC,

which means that
1

JAZU(a)E = U@)JAZE, ¢€9, acC.
In particular for ¢ € R we have U(t)JA2 = JATU(t) = JU(t)U(—t)AzU(t); and hence the unique-
ness of the polar decomposition implies
JUM) =U(t)J and U(t)A? =A3U(t), teR.

Thus implies the spectral projections of H and A commute, which is in turn equivalent to the
commutativity of {U(t)} and {A®}. Definition 2.1.(d) implies for n € 2 that & — (& | ) =
(U(—i)n* | €) and thus is bounded. Consequently 7 € ®” and 7> = U(—i)n* (vecall (Fn | &) = (S¢ |
n)). Thus A C ®° and

Ag = FSE = (&) = U(-i)¢ = exp(H), €€
We next show that 2 is a core for exp(sH), s € R. We first claim it suffices to show that (1 + K)
is dense in 9. Indeed, let £ € D(K) and take (&,) C (1 + K)2 converging to (1 + K)&. Noting that
K is positive (since H is self-adjoint) we have
Hgn - 5m”2 < +H£n - gm”2 + <K(£n - fm)agn - fm>

or 1€, — &mll < I(1+ K) (&, — &m)|l- Hence (&,) is a Cauchy sequence and we denote ¢ = lim,, .
Consequently lim,, K¢, = lim,(1 + K)&, — &, = (1 + K)§ — ¢. Since K is closed this implies
K(=(1+K)—(,or 1+ K)( = (14+K){ But 1+ K has dense range and consequently is injective.

So it must be that £ = ¢ and hence (§,,) converges to ¢ in the graph norm: ||-||x = /| - |2+ || K - ||%-
Thus to show 2 is a core for K it suffices to show (1 + K) is dense $.

Applying Lemma 1.22 to {K®} and s = 0 we have
1 1 1 . 1
K+ K2)l= [ —— K" dt:/iU t) dt.
( >+ 2) /Reﬂ't +e—ﬁt R eTl't _|_e—7rt (S )
Since K = U(—is), we have for each & € 2:
E=(1+K) " 1+K)¢=(K?+K?) 'K 3(1+K)¢

1 1

:/R(1+K)ﬁU (s <t—;)>§dt.

Note that mﬁU (s (t — %)) ¢ € 2. Approximating the above integral by Riemann sums shows
that £ is arbitrarily well approximated by (1 + K)2I.
Hence 2 is a core for K = exp(sH) so that A = exp(H). Consequently A® = U(t) for t € R.
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We can now show that 21 is a right Hilbert algebra with involution b. Given &, 1, € 2,

J(en) = ASS(en) = U (—;) (i) = (U (—;) nﬂ) (U (—;) eﬁ) — (Jn)(J€); and so

(&n1€) = (JC | T(€m) = (JC | (I)(IE) = (I | 7€) = (€| A Hn)Iq))
— (€1¢UA ) = (€1 ¢ ) = (€| U (=) = (€] ).

Also, since J = AzS = U (—%) S and since both S and U(a) map 2 to 2, we have JA = 2. [Since
J maps 2A” = A onto A’ we see that 2A = 2'. Hence R;(A) = R, (A') = R, (A). JAlso, it is easy to
verify that for n € A we have

m(n) = Jm(Jn)J,
()" =m0 ().
Since 2 is a core for Az ... [What the hell does he need any of this for??]

3. WEIGHTS

In this section we study a generalization of positive linear functionals and the corresponding generalization
of cyclic representations: semi-cyclic representations. We also characterize when such objects are “normal.”

Definition 3.1. A weight on a von Neumanna algebras M is a map ¢: M  — [0, o0] such that

(1) oz +y) =p(@) + oY), v,y € My;
(i) e(Az) = Ap(x), A > 0.

We use the convention 0 - co = 0. The weight is said to be semi-finite if
py = {r € Mi: ¢(z) < oo}
generates M. The weight is faithful if p(z) # 0 for every non-zero x € M . Lastly, the weight is normal
if
p(sup o) = sup (zq)

for every bounded increasing net {x,} C M.

It will rarely be the case that we consider weights which are not semi-finite (since in this case we would
just replace M with p;; N M). Our first lemma is a more general result that is easily seen to apply to p,:

Lemma 3.2. If p is a herdity convex subcone of M4 in the sense that
p+pChp, Ap Cp, A>0 (i.e. is a positive cone in M);
0<y<cz TEP=yYEDP (i.e. y inherits membership in p from x),

then we conclude:

(i) n:={x € M: z*z € p} is a left ideal of M;
(i) m:{>0  yiwit 1, .. Ty Y1, - - -, Yn € 0} is a *-subalgebra such that mNMy = p and every element
of m is a linear combination of four elements of p.

Proof.

(i): Since (az)*az = z*a*ax < ||a|*z*x we see that an C n for any a € M. Also,
0<(zdy)(wdy) =a"ztyzta’y+y'y = FyoFa'y <z +yy
Hence
(zxy)(zy)=c'ztyzyz+y'y<2az+yy),

which shows that n is additive. Thus n is a left ideal.
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(ii): m is clearly additive and closed under the * operation. Note that for y,z,a,b € n, (y*z)(b*a) =
(z*y)*(b*a), and since n is a left ideal we know x*y, b*a € n. Hence m is closed under multiplication
and therefore a *-subalgebra. The polarization identity

3

1 )
yrr = 1 ’;Oik(a: + zky)*(m + iky),

easily allows us to decompose element of m into a linear combination of 4 elements of p. Now,

suppose
a:Zy;‘xiEmﬂMJr, Tlyeeoy Ty Yy -y Yn € N
i=1
Then
1o 1o
O<a=glat+a’) = Do lyiwi+aiyl = 1 D @i+ v) (@i 4 yi) — (i — v) " (@i — i)
i=1 i=1
< S+ ) ) €
- x x .
<7 - kt Yk kEtyk)EP
Since p is hereditary this implies @ € p. Thus m N M C p and the reverse inclusion is clear. O

Definition 3.3. The sets in the above lemma defined for p, are denoted:

n,:={r e M:z*z €p,};

n
*
my = {§ YiZit X1y - Ty Y15+ -5 Yn entp}-
=1

The later set, m,, is the definition domain of the weight ¢ or the definition subalgebra of ¢. We note
that we can extend ¢ to a linear functional on m,,.

We do a construction analogous to the GNS construction for positive linear functionals for weights. We
note that the set
Ny :={x € M: p(z*z) =0},
is a left ideal of M contained in n,. We denote by 7, the quotient map n, — n,/N,. From here on the
construction is identical to the GNS for positive linear functionals. We denote the completion of n,/N,,
with respect to the norm |n,(z)||? = p(z*z) by $,. Also, for a € M we define m,(a) € B(H,) by
mo(a)n,(z) = ny(ax). Hence {m,,9,} is a representation of M.

Proposition 3.4. If ¢ is a semi-finite normal weight, then the representation {m,, 9} is a non-degenerate
normal *-representation. In addition, if ¢ is faithful, then so is .

Proof. That 7, is a *-representation is clear from our experience with the GNS construction. Since M has
a unit, m,(M)$H, O me(1)ne(n,) = n,(n,) so the representation is non-degenerate. If ¢ is normal (and
faithful) then it follows immediately that 7, is normal and faithful. ]

Definition 3.5. The triplet {7, $,,7,} is called the semi-cyclic representation of M with respect to ¢.
In general, a semi-cyclic representation of M is a triplet {m, ), 7} consisting of a representation {m, $H} and
a linear map 7: n — $ from a left ideal of M into $) with dense range such that

m(a)n(z) = nlax), aEM, xen.
Our first goal is to establish several characterizations of normality for a weight ¢ (c.f. Theorem 3.12).

Lemma 3.6. Let M C B($) be a von Neumann algebra.
(i) If x,y € M satisfy the inequality y*y < x*x, then there exists uniquely an s € M such that

Yy = sx and s[z$)*+ = {0}.

Furthermore, ||s|| < 1.
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If {xa}aca is a family in M such that a = ) x}x. converges strongly, and if the operators {sq}
from part (i) are determined by xo = sqa'/?, then the sum

b= ZSZSQ

is strongly convergent and p is the range projection of a, the projection onto [a$)].
If {xs} is a bounded increasing net in My with x = sup,, T, and if {s,} are the operators from part
(i) satisfying zl/? = sax /2, then {s% s} is increasing and p = sup,, s%,54 is the range projection of

x, and also {s,} converges to p strongly.

For each & € $, we have

ly€l* = (y*ye | ) < (z"x€ | €) = [|z¢€]|?,
so that the map so: 2 — y9 defined by z€ — y¢ is a well-defined linear map with ||sp|| < 1. Thus
we can extend it to a bounded operator on [zf)], which we continue to denote sg. Let p be the
projection onto [z£)] and set s = sop, then ||s|| < |[sol|l|p]] < 1. Then sxzf = sopxé = sgzé = Y&,
so that sz = y. Also s[z§)]+ = {0} since p is zero on this subspace. Since $ = [z$)] @ [z$]*, the
uniquness of s is clear. Suppose u € U(M’) then
usu*x = uszxu® = uyu* =y,

and so the uniqueness of s implies s = usu*. Consequently s € M" = M.

: Let p denote the range projection of a. We note that since a is positive, [a$)]* = ker(a) = ker(a'/?) =

[a'/2§]+. Use part (i) to produce s, € M such that z, = s,a'/? and s,[a'/2H]* for each a € A.
For £ € ), set n = a'/2¢. Let B be a finite subset of A, then

(Z sasa | n) =3 (shsaab¢lade) = 3 (absisaabe )

aEB a€B a€B

2
- (Z Thzaf | 5) < (ag | ©) = ||ae]” = >
aeB
So if we denote pp =) 5 545a, then (pn | n) < (pn | n) for every 1 in the algebraic direct sum
a'’2$ + (1 — p)H (noting that pp(l — p) = 0 since pglaH]t = 0 and (1 — p)$H C [aH]*). So by
continuity pp < p on all of . Now, {pp} is an increasing net and hence converges strongly to some
operator, say po € M, and py < p. Letting n = a'/2¢ again we have

2
. 1 1 . 1
(o | m) = lign (Z shsaabe | a2€> = lipm (Z wiwit | f) = (a€ 1) = [labe| = I
a€B a€B

where we have used the strong convergence of a = Y. ziz,. Hence (pon | ) = ||n||* for every
n € p$H = [a'/%$)] by continuity, which means py = p.

Let p be the range projection of x and s, from part (i) corresponding to z, < z. If & < 8 and
n = z/2¢ then

(sisan | 1) = (shsaabe | a¥€) = (wag | €) < (w561 €) = (s350m | 1) < (@€ | €) = m]l%,

so that {s’s4} is increasing and majorized by p. Letting pg = sup,, $% 34, the same argument as in
(ii) shows pg = p.

To see that s, converges strongly to p, first note that ||s.&]|? = (s554€ | €) < (p€ | €). In particular,
if £ € [zH]F then ||s,&[|? = 0. Thus it suffices to show lim,, s,n = 1 for n = x¢&:

lim || sqn — nl|* = lim(san —n | san —n) =lm(sysan | n) = (san | n) = (0| san) + [|n]

= 2nl® — lim [(s0& | 1) + (17| 50)] = 2|n|> — lim [ (i€ | m) + (0 | wdae)
= 2|lnll* = (€ | ) + (n | 26)] =0,

where we have used the strong convergence of the x. O
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Lemma 3.7. If M is o-finite, then every completely additive weight p on M, in the sense that ¢ (ZQGA xa) =
Y oaca (o), {Ta} C My, is normal.

Proof. As M is o-finite, it admits a faithful normal state w. Given a bounded increasing net {x,} C M,
with = = sup,, 24, we inductively construct a sequence {,,} from {4} such that w(z,) > w(z) — 1 for each
n € N. Then since z,, < x, we have y := lim,, z,, < = and the convergence is o-strong. Then

o) = 1 < wln) < wly) < wla),

for each n so that w(zr) = w(y). Since w is faithful, this implies z = y.

Now, setting zo = 0 and y,, = &, — p—1 for n = 1,2,... we have z = > y,, and since ¢ is completely
additive
plz) = Zl plyn) = lim p(z,) < limp(za) < p().
n=
Hence ¢(x) = sup,, ¢(z), and ¢ is normal. O

Lemma 3.8. Let {m,, 9y, 1,} be the semicyclic representation for a normal weight ¢ on M. Then there
exists a unique completely positive map 6, from the definition subalgebra my, into w,(M), determined by the
formula:

(a,0,(y ) = (ano(2) | no(y), @ €mp(M)', 2,y € ny.

Proof. Since every element of m,, is a sum of elements y*z with x,y € n, it is clear that the above formula
determines ¢, by linearity.

Suppose z*z = y*y. Applying Lemma 3.6.(i) we obtain y = sz and z = ty. The uniqueness condition
implies that s is a partial isometry with ¢t = s*. Then for a € m,(M)’, we have

(ane (@) | 1(2)) = (ane(s™y) [ no(57y)) = (mp(s)ame ()1, (y) | 16(y)) = (ame(y) [ 7 (y))-

So the map z*x € m$ — 0,(z*x) € m,(M)., is well-defined. Tt is clear that 0, (Az*z) = M, (z*x) for X > 0.
We need to show the additivity. Let z = y + x for z,y € mf’j. Using Lemma 3.6.(ii) pick s,t € M such
that /2 = s21/2, y'/2 = ¢21/2 and p = s*s + t*¢ is the range projection, s;(z), of z. Then for a € 7, (M)’

we have
(@,0,(2)) = (amg (=7) 1np (1)) = (amp(ss + 0y (22) [, (7))
( amy,(s*s) (z%> | 7 (z%)) + (aww(t*t)mg (z%
o (1) () (69 . )

= (a,0,(2)) + (a,0,(y)) = (a,0,(2) + 0,(y)) ,
hence 0,(2) = 0, () + 0,(y). So is 0, is linear on m} and we can then extend it to all of m,,.

Lastly, we check it is completely positive. Let z1,...,2, € n, and a1, ..., a, € m,(M)’, then we have

n

(aiag), (Op)nlaf;)) = (lafag], [0y («f2)]) = ) (afay, 0, (xfa;)

ij=1

2
n

Z (aiazng(z;) [ ne(z:)) Z(Z]’Ihp zj)|| >0,

1,j=1

so that 0, is completely positive. O
Lemma 3.9. With the notation of the previous lemma, if h € m,, is self-adjoint, then
10, ()| = inf{p(a) + ©(b): h=a—b, a,bem}.

Proof. The p(h) be the quantity on the right hand side of the above equation. So p is a function on the
self-adjoint elements, m,, 5, and
p(AR) = [Alp(h) >0 XeR.

We first show that p is subadditive. Fix z1,22 € m,; and € > 0. Let y;, 2; € m;j be such that x; = y; — 2;
e(yi) +¢(zi) < plz;) + e,
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fori=1,2. Let x = x1 + 22, y = y1 + yo, and z = 21 + 29, then x =y — z and

p(@) < o(y) + ¢(2) < p(a1) + p(a2) + 2¢.

Thus p(z) < p(z1) + p(x2). Thus p is subadditive and is a semi-norm on m, ,. Note that p and ¢ agree on
mt. For z € m} we have f,(x) > 0 and

16,) = (1,0p@)) = [l ()] = ot@) = ote).
So if 2 = y — z with y, 2 € m{ then

16, (@) < 0o + 16 (2)] = #(y) + ¢(2)-

Since this holds for an arbitrary pair y, z we get [|0,(x)|| < p(z) for z € my, .
Conversely, fix xo € my, . Using Hahn-Banach, let ¥ be a real valued linear functional on m,, ;, such that

P(xo) = p(xo),  [P(@)] < plz),  zempp.

Then linearly extend % to all of m,, as a self-adjoint linear functional. We have
—pla") = —p(a"z) < Y(a*z) < pla*w) = pla"a),

so that the sequilinear form (ny(x),n,(y)) — ¥(y*z) (defined on 7, (n,) % n,(n,)) is bounded and hence
extends to all of §,. As it is bounded, there is a bounded operator a € B($),) with ||a|| < 1 such that

(ang(z) [ no(y)) = Y(y*z), =y €n,.
It is easy to see that a € m,(M)’. Since v is self-adjoint, a is also self-adjoint. As zg = >, yrz; is self-adjoint
we have

1

* 1 * * 1
zo = 5 (w0 + 25) = §Zy¢$i+xiyi= -
i

2 4

* * 1 * *
> (@it wi) (@it y) = (20— i) (@i —wi) = 7 Y _pipi — diai,
[ 7
where p; = x; +y; € n, and ¢; = x; — y; € n,. Then

plie) = (a0) = 7 (1p) — (e a) = 3 3 (@na (5 | 0 () = o) | 9 (a)

= %Z (@,0,5(pipi)) — (@, 0,(q7 6:)) = <a,9¢ <‘1‘ Zp:-‘pi = q;‘qi> > = (a,0,(x0)) < [10,(x0)ll,

Thus p(z9) < ||0,(x0)|| and we obtain equality. O
Our next lemma asserts that 6, is closed when restricted to mg.
Lemma 3.10. We again maintain the same notation of the previous lemmas. Suppose {x,} is a bounded
sequence of m¥.
(i) If {zn} converges to x € M a-strongly and if {0,(x,)} converges in norm, then x belongs to mf.
(ii) If {xzn} converges to zero o-strongly and if {0,(xy)} converges in norm, then the limit of {6, (z,)}
must be zero.
Proof.
(i): Fix e > 0 and let ¢ = lim,, o0 0, (2, ). Choose a subsequnence {y, } C {z,} so that ||y — 0, (y,)| <
€/2"*1. This implies
€
165 (Yn-+1) = O ()| < 5

By the previous lemma, find a,, b, € mg with y,4+1 — yn = @, — b, and

€
o(an) +p(bn) < on”

Then

n

n n
Yn+1 =y1+2yk+1—yk=y1+zak—bk Sy1+zak-
k=1 k=1 k=1
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For o > 0, we define a function f, on (—1/a,c0) by

t
olt) = .
fa(t) 1+at
Then f, is operator monotone: —1/a < x <y = fo(z) < fo(y). Also fo(t) < é Applying this to
the above inequality we obtain

fa(yn+1> < fa <y1 +Zak> < é
k=1

Hence {fo (y1 + > r—; ax)} is bounded and increasing and therefore converges o-strongly to some
Cq € My. Then

k=1

¢a = lim fo <y1 + Z%) > lim fo(yni1) = fa(2),

where we have used the fact that the functional calculus for bounded functions on closed subsets of
C (restrict fa|( o) is strongly continuous (see Lemma I1.4.6 in [2]). Next, using fa(t) < ¢ and the
normality of ¢ we get

p(falw)) < lim ¢ (fa <y1 +> ak)) < lim ¢ <y1 +> ak)

k=1 k=1
o0 oo €
=o(y) +D_elar) <oly) + D o0 =0y +e
k=1 n=1
Now since ¢t = limqy—0 fo(t) and fo(t) < fg(t) if 0 < 8 < «, the normality of ¢ yields

p(r) = iig})@(fa(ff)) < p1(y1) + € < +oo,

hence = € p, = m}.
Fix € > 0, ¥, {yn}, {an}, {bn}, and f, as before. We note

n n n
Y1 = Yn+1 = Zyk —Yk+1 = Zbk —ap < Zbk-
k=1 k=1 k=1

The uniform boundedness theorem implies {y,} is bounded, say K = sup ||y,||. Then y1 — ypn4+1 >
—K, so that if 0 < a < 1/K, we can apply f, to obtain

Ja(1 = yns1) < fa (Z bk> .
k=1
Let do = limy, o0 fo (3 p—; bk). By assumption, lim, oy, = 0, so
falyr) = lim fa(yr = yns1) < lim fo <; bk) = d,.
Normality gives us

k=1

n n n ¢
¥ (fa (Zbk>> < (Z%) < Zz—k <€
k=1 k=1 k=1
implies that o(fo(y1)) <e. Asa — 0, fo(y1) converges upwards to y; and we get
plyr) = lim o(fa (1)) < e

p(fo(y1)) < plda) = lim o <fa (i bk)) ;

Hence

[l < MY = 0o (y)ll + 10, (y)Il < €+ o(y1) < 2,
so it follows that ¢ = 0. a
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Definition 3.11. A weight ¢ is o-weakly lower semi-continuous if for each ¢ > 0 the set
foe My: o(a) < 1)
is o-weakly closed.

Theorem 3.12. If ¢ is a weight on a von Neumann algebra M, then the following are equivalent:
(i) ¢ is completely additive in the sense that

o (Z wa> = olxa)

acA acA
for every o-strongly summable family {xz,} in M4 ;
(ii) ¢ is normal;
(iil) @ is o-weakly lower semi-continuous;
(iv) If we define
P, = {we M w() <p(), e Myl
then
(z) = sup{w(z): w € Dy}, re My
We aren’t quite ready to prove fully prove this, but we note that (iv) = (4ii) = (%) = (i) are easy [ADD
PROOF]. The difficult implication is (¢) — (iv).
Consider the graph of 7,:
G:={(z,n,(x)) e M B H,: x €nyt.
On the direct sum M @ $, we take the norm:

1z, Ol := max{[[z[l, [¢][}, = €M, £en,

Hence it is the Banach space dual of the direct sum M., @ $7, with norm:
[(w, €N = llell + 1€70,  we My, £ € 0.
Lemma 3.13. If M is o-finite, then the unit ball of G is weak™ compact in the above Banach space M@ $H.,.

Proof. Let B be the closed unit ball of M & ), then by Alaoglu’s theorem it is weak™ compact and so we
only need to show B N G is weak™ closed. Since BN G is convex, the Krein-Smulian Theorem (see Lemma
12.1 in [1]) implies that suffices to show BN G is closed under a locally convex topology on M & ), having
M. @57, as the dual space. Towards this end, we consider the product topology 7 of the o-strong™ topology
on M and the norm topology on ), and prove that BN G is T-closed.

As M is o-finite, the unit ball is metrizable with respect to the o-strong* topology. Therefore, if (x,&) is
a limit point of BN G, then there exists a sequence {x,} in n,, such that {z,} converges to « o-strongly* and
Ine(zn) — &|| = 0. Since (@, ny(xyn)) € B, we have ||z, || <1 and ||n,(z,)|| < 1, so that {2}z, } converges
to z*x o-strongly:

Yo l@hen — 2 2)nl? <2 l(@hzn — ap@)énll + [|(2he — 2" 0)énl?
m=1

m=1

<23 |ep Pl (@n — 2)émll* + (|2, — %) (@€m) |1
m=1

00
<2 (@n = 2)eml® + lI(z}, — 2 )mall?,
m=1

where Y [|€m ] < 0o and Y2 9w > < [lz]]* X0, I€m > < co. We also have that 0, (x;z,) = Wy, (a,)
converges to we in norm, where we, ¢ € 9, means the vectorial functional: a € 7,(M)" — (a( | ¢). Indeed,

given € > 0 let n be such that ||n,(z,) — &|| < min {%, m} Then let a € m,(M)" with ||al| < 1. We have

lwn, (2.)(@) —we (@)l < [[(ane(@n) [ np(2n)) = (a€ | ne(zn)ll + [[(a€ [ np(2n)) — (ag [ ]
< [(a(me(@n) = &) | np(zn))ll + (ag | mp(zn) = £

< llallng(an) = Ellna ()l + lalllgling(@a) = €l < 5+ 5 =e.
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Thus we can apply Lemma 3.10.(i) to obtain that z*z € mf, ergo « € n,. Thus we can define 0, ((z, —
)" (Tn — T)) = Wy, (2,—2)- We know {(z, — x)*(z, — )} converges to zero o-strongly and by the same
argument as above, W _(z, —¢) converges to we_,_(,,.) in norm. Hence Lemma 3.10.(ii) implies that we_,,_(z) =
0 inn 7, (M),. In particular, since this functional is positive we see that

1€ = np(2)]1* = we—p, @) (1) = 0.
Thus £ =1, (z), and (z,£) € BNG. As (z,£) was an arbitrary limit point, BN G is T-closed. O

Lemma 3.14. If M is o-finite, then conditions (i), (i), and (iii) in Theorem 3.12 are equivalent.

Proof. (ii) = (i) is clear and the other direction was show in Lemma 3.7. Also, (4i7) = (i) is clear from the
definition. We show (i7) = (4i1).
For each r,s > 0 we set
Brs = {(z,§) e M@ Dy [lz]| <7, [[€]] < s}

Then by the previous lemma, B, ; NG is weak™ compact, so that the projection C; s of B, s NG in M:
Crs = {z e M: |z]| <7, p(a*z) < 5%}

is o-weakly compact. Set
E:={z € M: p(a*z) < 5%}, 5> 0.
Let S be the closed unit ball of M. Note that FE, is convex:

pl(te + (1= t)y)" (e + (1 = t)y)) "/ = |Iny (tz + (1 = t)y)|
<tlnp@)l + (=Bl (Yl <ts+ (1 -t)s =s.

Hence the o-weak compactness of E; NrS = C,. 5 for every r > 0 implies that E; is o-weakly closed. Next,
set
Fy:={z € My: o(z) <s?}

and note that by definition ¢ is o-weakly lower semi-continuous iff F is o-weakly closed for each s. So it
suffices to show the latter. Convexity of F (shown with the same reasoning as with E) implies it is enough
to show that Fy NS is o-strongly closed. Suppose {z,} is a net in Fs; N rS converging o-strongly to some

x € My. As the square root operation is o-strongly continuous on Fs N rS, we know {xl}/ 2} converges

o-strongly to z/2 . But {x}/Q} C E,, which is o-weakly closed. Hence z'/2 € E, and so x € Fi. (]

We require some lemmas to extend this result from the o-finite case to the general case.

Lemma 3.15. Let ¥ denote the set of o-finite projections of M and Mg := |J{pMp: p € }. Then My is
an ideal of M and the limit of each o-weakly convergent sequence belongs to M.

Proof. We first note that © € My iff s;(z),s.(z) € ¥ (where s;(x) and s.(z) are the range projections
of z and z* respectively). Indeed, suppose x € My, then € pMp for some p € 3. Hence x = px so
that s;(z) < p and thus s;(z) € X. Also x = ap, so that * = pz* and consequently s,.(z) < p and
sr(z) € X. Conversely, if s;(z),s,(z) € X then p : s;(x) A sp(z) € ¥ and x = pap. It is clear that My is
additive, but with this characterization we can see it is in fact an ideal: for x € Mgy and a € M we have
sr(az) = s(x*a*) < si(z*) and so s.(ax) € X. But also, s;(ax) € ¥ since it is equivalent to s,(ax) (by
considering the polar decomposition).

Let {z,} C My be a sequence converging to z o-weakly. Then there exists a sequence {p,} C ¥ such
that x, = p,z,p, for each n. Let p = /\ZO:1 DPn, then p € ¥ and z,, = pz,p for each n. But then = = pxp
and hence x € M. O

Lemma 3.16. Letting the notation be as in the above lemmas, suppose that a convex set F' C ./\/la' 18
hereditary. A necessary and sufficient condition for F to be o-weakly closed in Mg is that F N pMp is
o-weakly closed for every p € X.

Proof. The necessity of the condition is clear, so we show the sufficiency: suppose F' N pMp is o-weakly
closed for every p € ¥. Let w be a normal state on M with p = s(w), the support of w. Define d(x,y) :=
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w((x — y)*(x —y))/? for z,y € pMpN S (where S is the closed unit ball of M), then it is a metric. Set
E={x e M:z*z € F}. Then for z,y € E and 0 < XA <1 we have

0< Az + (1= Ny) Az + (1= Ny) =Mo"z + (1 - X)?yy + AL - N)(z"y +y"2)
<N+ (1= N2y + M1 =N (2" +y*y) = "z + (1 - Ny*y € F.

Thus Az 4+ (1 — A)y € E as F is hereditary. Thus E is convex. Also, if a € S, then aE C E since
(ax)*ax < x*z.

Next we show that N pMp is o-weakly closed for every p € ¥. Indeed, by the convexity of the set it
suffices to show E N pMp NrS is o-strong* closed for » > 0. But this set is simply the inverse image of
F N pMp under the map: = — z*z from rS N pMp — r2S N pMp. Since this map is o-strong* continuous
and F'N pMp is o-weakly closed we are done.

Then we show pFE is o-weakly closed for all p € X, which is equivalent to that of E*p. It again suffices
to show that »S N E*p is o-strong closed for » > 0. If x is in the o-strong closure of 7S N E*p, then x is
approximated o-strongly by {z}} C S N E*p. Thus, {z}} converges o-weakly to z*. Since My is an ideal
and p = ppp € My, we get that x € My for each n. Let ¢ € ¥ be such that z,, = qx,q for every n.
Thus z, € E*pNgMgq C E* N gMq (since p € S and for a € S we have aE C E). The set E* N ¢Mgq
is o-weakly closed by the previous argument (which showed E N gMgq is o-weakly closed), hence we have
x* € E* NgMg. So we have z* € E*. But also, *p = lim,, 2},p = lim,, ), = z*, so that * € Mp. Thus
¥ € E*N Mp= E*p, and x* € rS is clear. So we have the required o-strong closedness.

Let F be the o-strong closure of F and y € F N My. Set p := s(y) € ¥ and let {y;} be a net in F
converging o-strongly to y. Then {yzl / 2} converges to y'/? o-strongly, and thus {pyz1 / 2} converges to py'/2.
The closedness of pE implies that py'/? = y'/2 € pE C E. Therefore, y belongs to F, and FNMy=F. O

Proof of (i) = (i) in Theorem 3.12. Suppose ¢ is a completely additive weight on M in the sense of (i). By
Lemma 3.14, ¢ is a o-weakly lower semi-continuous on (pMp), for each p € ¥. Set F:= {x € M : ¢(x) <
1}, then F N pMp is a o-weakly closed. Also, F' is convex and hereditary, so the previous lemma implies
F N My is relatively o-weakly closed in My. Let {p;}icr be a maximal orthogonal family on ¥. Then
> pi = 1. For each finite subset J C I, set q; := >, ; ps. It follows that ¢y € ¥ and {q,} increases up to
1. To show the o-weak closedness of F', it suffices to prove the o-strong closedness of F NrS, r > 0, by the
convexity of F. Let {xx: A € A} be a net in F NS converging o-strongly to z. For each finite subset J of

I, {xi/Qan:}\/zz A € A} converges to z'/2qya'/? o-strongly. Since M, is an ideal of M, both {x}\/2qui/2}
and z'/2¢;2'/? belong to M. Since m}\/quxi/2 e F, z'/2q;2'/%2 € FN M, as seen above. Namely, we have

cp(xl/2q,]x1/2) < 1, thus we conclude, using the complete additivity of ¢:
plz) = (1621 xépmﬁ) = ;cp (x%pix%) = li?;@ (m%pix%) = li?up (x%qjx%) <1
Hence z € F, and x € rS is clear. Therefore, F is o-weakly closed. Now, for each s > 0, we have
F,:={z € M, : o(x) < s*} = s°F,
concluding the o-weak lower semi-continuity of . ([l

Recall that we noted the ascending implications in Theorem 3.12 were clear, so the above proof establishes
the equivalence of (i), (i7), and (4i7). It remains to show that together they imply (iv). We’ll need some
results about ordered locally convex vector spaces.

If A is an ordered locally convex vector space over R, let A be the positive part and assume A = A, —A,.
In the dual space, A*, the dual positive cone is defined as:

AL ={we A" w(r) >0, ze AL}
A% gives A* an ordered structure. Given a subset F' C A we define the polar of I by:
Fe={weA":w(x) <1, ze€F}.

Also, we denote
FN=F°nAL :={we AL :w(x) <1, z € F}.
Given E C A*, E° and E” are defined analogously.

Lemma 3.17. Let A be an ordered locally convex vector space, then the following are equivalent:
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(i) For every hereditary convex closed subset F' C Ay
F=(F-A;)" N4,

where the bar denotes the closure.
(ii) For every hereditary convex closed subset F' C Ay

F=F".

(iii) If ¢ is an extended real valued lower semi-continuous function on Ay such that

o(x) < o(y), if0<x<y;
elx+y) <o) +ely), ifryc Ay (4)
p(Ax) = Ap(x), ifAeERy,

then ¢ is of the form
o(x) = sup{w(x): w € B}, x € Ay,
where
O :={weAl:wx) <p),re A} (5)

Proof.

(i)=(ii): We show (F — A;)° = (F U (—A4))°. Noting that 0 is an element of both F and —A,, it is
easy to see that for w € (F — A4)° we have w(x),w(y) < 1 for any x € F and y € —A,. Hence
(F—Ap)° C (FU(—Ay))°. Conversely, let w e (FU(—A4))°. Given z € F and y € —A, we must
show w(x +y) < 1. Let 0 < A < 1, then

wlx+y) = %w Az + Ay) = %w <)\x +(1— A)li)\y>
=5 @+ a-ne (20) ] < g a-n= 5

where we have used the fact that —A, is a cone to say ﬁy € —A,. Since this holds for each
A € [0,1], let X tend to 1 to obtain w(z +y) < 1 or w € (F — A;)°. Hence the polars are equal.
Then we have

(F — Ay)° = (FU(=A}))° = FP 11 (A} )°,

but (—A;)° = A%. Indeed, if w € (—A4)° then w(z) = —w(—2) > —1 for all x € A,. Scaling x we
see w(z) = Aw (2) > —A for all A > 0 and hence w(z) > 0, so w € A%. Conversely, if w € A% then
w(—z) =—w(r) <0< 1foral € Ay so that w € (—A4)°. Thus we have

(F—A,)° =F°nA, =F",

Now, the Hanhn-Banach Seperation theorem implies (F — A )~ = (F — A1 )°°. Indeed, we clearly
have FF — A, C (F — A4)°° and since w(z) < 1 is a closed condition the closure is contained as well.
Conversely, we cannot have z € (F' — A;)°° \ (F — A1)~ because (F — A;)~ is a closed convex
set and thus we can then find ¢ € A* such that ¥(z) < s < ¢t < ¢¥(y) for some s,t € R and all
y€e€(F—A;)" . Since —Ay =0— A, C F— A, this implies s < t < 0. Indeed, for any A > 0 and
y€ —Ay wehave \y € —A, C (F — A)™ so that t < ¥ (Ay) = Mp(y) or

+ <),

If t > 0, then letting A\ = ﬁ would contradict the above inequality. Thus s < t < 0, so if w := ¢

S

then we have w(y) = YW <1 forally € F— Ay so that w € (F — A4)°. On the other hand,

S

w(z) = L) > 1 which contradicts z € (F — A4 )°°. Thus (F — Ay)~ = (F — A,)°® and so by the

S

above work and assumption we obtain

F=(F—A) NA,=(F—-A)®°NA, =(FN°NA, = FM
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(ii)=-(iii): Suppose ¢ is a function on A satisfying the conditions (4) in (iii) and set F' = {z € A, : p(x) < 1}.
Then F is a hereditary closed convex set. Realize that ® in equation (5) is exactly F”*. Indeed,
if w € ® then w(z) < ¢(x) for all v € Ay and w € A%. In particular, w(z) < ¢(z) < 1 for
all z € F, hence w € F”. Conversely, if w € F” then for z € A, we either have p(x) = 0 or
p(z) # 0. In the former case, we have p(Ax) = Ap(z) = 0 for all A\ > 0 so that Az € F for all
A. Hence w(z) = jw(Azx) < 1 for all A. Letting A tend to infinity we have w(z) = 0 and thus
w(z) < 9(x) holds. If p(z) # 0 then let y = —*=, so that ¢(y) = 1 and hence y € F. But then

#(x)’
1> w(y) L w(z) or w(z) < ¢(x). So F" = ®. Set

= e@
P(x) :=sup{w(x): w € B}, x € Ay,
By definition of ® we have 1(x) < ¢(z) for all z € A;. Suppose there is some xy € A; with
(o) < @(xg). Scaling zp we may assume (xo) < 1 < ¢(z0), in which case zg ¢ F'. On the other
hand, (ii) implies that
F=rF"={rcAi:w@)<l,wed)={zec A, ¢(zx) <1},
so that xg € F, a contradiction. Hence ¥ = ¢.
(iii)=-(i): Suppose F is a herditary convex closed subset of A, . Set
p(x) :==1inf{r > 0: x € rF},
then ¢ satisfies the hypothesis of (iii). Since F' is closed, we have F = {x € A;: ¢(z) < 1}. Hence
F={recA;:wx)<1l, wed}=d°NA,.
On the other hand
P={wedl:wkx) ek, rcA}={wecAl:wx)<l,zec F} =F° NAL.
As we saw earlier, F° N A% = (FU(-A1))° = (F—A;)° Thus ®° = (F - A)*° = (F—-A;)" by
the separation argument. Hence F = ®° N A, = (F — A;)” N A4, as desired. O
We can now finish the proof of Theorem 3.12.

Proof of (iii) = (iv) in Theorem 3.12. Tt suffices to show that condition (i) in the previous lemma is satisfied
for A = My,. Note that the relevant topology is the o-strong topology.

Let F be a o-strongly closed hereditary convex subset of M. For each © € M,, we set a, := sup{a >
0: 2z > —1/a}. Let {fa: @ > 0} be as in the proof of Lemma 3.10 and let

G={zeMp: folr) eF—M4;, a€(0,a,)}.
We first show GNrS, r > 0, is o-strongly closed. Suppose {x;: i € I} is anet in GNrS converging o-strongly
to some x € My, Since ||z;|| < r for each i € I, we have —r < z; and hence 1 < a,,. Consequently if
0 < a < 3 then a € (0,ay,) for each i € I so that by definition of G we have f,(z;) € F — M. Thus there
exists {y; }ier C F such that f,(z;) < y;. But then
1
foa(®i) = fo(fa(zi)) < falyi) < o

As a function on R, for 0 < o < 3 we know faq is continuous on [—r, r]. Hence {faq(2;): i € I'} converges to
foa(x) o-strongly. Since the net {f,(y;): ¢ € I'} is uniformly bounded by é, there exists a subset {y;: j € J}
of {y;} such that {f(y;): j € J} converges to a yo € M} o-weakly. But since 0 < f,(y;) <y; € F and F
is hereditary we know f,(y;) € F. But then as F' is convex and o-strongly closed it is also o-weakly closed
and hence we have y, € F. The inequality

Yo — f2o¢(x) = }len}(fa(y]) - fZOL(xj)) Z 07
implies that foo(z) € F — M, for 0 < a < 2%; that is, fo(z) € F— My if 0 <a < % To show z € G, it
remains to show that we also have fz(z) € F — My for < B < ay. Since fo(t) > fa(t) for 0 < a < S
and t € (7%, oo), we have fz(x) < fo(z). Thus fixing some a9 € (0,1/r) and letting 8 € [1/7, ;) we have
fa(z) < fol(x) so that
F5(@) = fal@) — (ful@) — falw)) € (F — My) — My = F — M.
Thus z € G and so G NS is o-strongly closed.



30 BRENT NELSON

Next we show

GNnrS=(F-My)nsS)NrS, s>,
where the closure is taken in the o-strong topology. Note that the right hand side of this equation is convex.
Suppose © € GNrS. Then f,(z) € F—M; for 0 < a < a,, and for sufficiently small o we have f,(z) € sS.
Since fo(x) S @ as a N\ 0, we have z € (F — My)NsS) for any s > r. So one containment is clear.
Conversely, if © € F' — M then since f,(z) < z for a € (0, ;) we have

fa(@) =2 — (2 = fa(z)) € (F = My) =My = F - M.,

so that z € G. Hence F' — My C G which implies (E — M) NsS C GNsS and consequently G N sS D
(F— M) N sS) since GNsS is o-strongly closed as shown above. Since r < s we then have

GNnrS=(GnNnsS)NrS>(F—-Mi)nsSnNrs.

So we have established the desired equality, which implies G NrS is convex. But then G is itself convex and
so the o-strong closedness of G N 7S implies G is o-strongly closed. But then F — M, C G C F — M,
implies

G = F - M+.
Soifx e F—MiNMi =GNMyg, then 0 < fo(z) and f,(z) € F — M,. Since F is hereditary this
implies fo(z) € F and hence & = lim,—0 fo(z) € F, since F is assumed to be o-strongly closed. Thus
F— M NM, CF, and the reverse inclusion is clear. This equality implies condition (i) is the previous
lemma is satisfied and hence ¢ is of the desired form. O

With this result we from now on take normal to mean any of the equivalent conditions in Theorem 3.12.
Fix ¢ and its semi-cyclic representation {m, $,,7,} of M. Set

B, = | A®,.
A>0

For each w € E,, define a sesquilinear form B,, on n,(n,) by

Bu(e(2),me(y)) = w(y'z),  z,y €ng.
We know w < Ay for some A > 0, so B,, is bounded and hence there exists a unique h,, € B($),)+ such
that
(homo(@) | na(9) = w(y'a),  wyen,.
Note that since w(y*zz) = w((2*y)*x), hy, € T,(M)'. Let {m,, Hw, &} be the cyclic representation of M
determined by w via the GNS construction. If we define a map ¢, on n,(M) by
tune(x) = Ty ()&, T €Ny,
then the inequality w < Ay implies t,, can be extended to all of $, (and is into $,,); we continue to denote
this extension by t,. Note that
(hone (@) | no(y) = w(y @) = (T (2)80 | T (Y)€w) = (tump (@) [ tune (1)) = (totwn, (2) [ n,(y)),
so that h, = t},t,,. Hence the polar decomposition of ¢,, looks like
1
t, = u,hd.
Also, it is clear that t,m,(a) = 7, (a)t, for a € M. So because h,, € m,(M)" we then have
Uy (a) = my(a)ug, ae€ M.
Define
Nw = U::fw,

so that for each z € n, we have

T ()0 = T (DU 6 = UTo ()€ = ulstumy (@) = hiny (@),
or )
hidng(@) = mp(@)ne, @€ mg.
Define
pe i={hw:w € E,} Cmyp(M),.
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Theorem 3.18. With the above notation, if
oy J llwll for = hy, € pyr
p(@) = { 0o otherwise,
then ¢’ is a faithful semi-finite normal weight on m,(M)’.
Proof. Tt is clear that E, is a convex subcone of M. Also, the map w — h,, is homogeneous and additive
so we see that p, is convex subcone of 7, (M)’, . Towards showing that p, is hereditary, let z € M’ satisfy
0 <z < h,,. From Lemma 3.6 we can write 21/2 = shl/? for s € M’ with ||s|| < 1. Define for each a € M
pla) := (my(a)sn, | sn.)-
Then for a,b € n, we have

p(b"a) = (mp(b"a)sny | s110) = (mp(a)sne [ mp(D)sn) = (s (a) i | 874 (b)7)

= (shin(a) | shing(t) = (@in,(a) | 23n,(8) = (an,(a) | m,(0).
In particular, since < h,, we have p(a*a) = (zn,(a) | ny(a)) < (honp(a) | np(a)) = w(a*a). Hence
0 < p < w, which implies p € E, and h, =« € p,/. So p, is hereditary; moreover,
¢'(x) = llpll < llwll = ¢’ (hw),
so that ¢’ is well-defined and monotone increasing.
Next we show that ¢’ is completely additive (i.e. normal). Suppose h =, ; h; converges o-strongly in

To(M)’,. We first consider the case when ), ; ¢’(h;) < oo. By the definition of ¢’ this implies each h; is
of the form h; = h,,, for some w; € E,. Hence

S il = 3 () < 0,
el el

so that w:= >, ;w; € M converges in norm. Then for each z € n, we have

wate) =Y wila"z) =Y (hing () | 1,(2))

icl el
2
1 *
= (b, (@) [ mp(@)) = [pEna@)|| < I0llIng @2 = Bl ().
Hence w € E, with h = h,,, and

el

P =llwll =Y llwill =Y ¢ (ha)-

Conversely, if ¢'(h) < oo, then h = h, for some w € E,,. Since p is hereditary (as shown above) we know
h; € p, for each i € I. For any finite subset J C I we have,

> @ (hi) =¢' <Z hi> <¢'(h) < 0.
ieJd =
So that ), ; ¢'(hs) < oo, and through the previous argument we obtain ¢'(h) = >, ; ¢'(hi). Thus ¢’ is

normal.
Since ||hy|| = 0 iff w = 0, ¢’ is faithful. It remains to show ¢’ is semi-finite. Let

ng = {x € Tp(M)": ¢’ (") < 00}

n
Pp— * L. E P— *
my = YiXit L1y 3Ty Y1y -3 Yn Ny —nw,nwl.
i=1

From Lemma 77, we know p, = mz, so that
{hprwed,}={xe m:f,: ||| < 1}.
But then for each z € n, we have
1
15 (2)1? = p(a*x) = sup{w(z*z): w € By} = sup {Ilhin@(I)HQ: we %}

1
= sup {lydn, (@))% y € mE, Iyl <1}
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Since p,r = m:;,, y € m:g, with |ly|| < 1 can be written as y = h? for h € n, with 0 < h < 1. Hence we
obtain
1m0 (2)11* = sup { [ (2)[|*: h € nyr, 0< A <1},

which implies that n, N 07, is non-degenerate on §,. [WUT?:] Thus the open unit ball of (n, N 07,4 is
upward directed and converges to the identity o-strongly. Since a*m,(M)’a C ny Ny, for every a € nyr (be-
cause for z € m,(M)’ we have (a*za)*a*za = a*z*aa*za < ||z||?*||a|*a*a and a*za(a*za)* = a*zaa*z*a <
llz||?||al?a*a), 7,(M)’ is the o-strong closure of ny N ny,. Thus ¢’ is semi-finite on 7, (M)". O
Definition 3.19. The weight ¢’ on m,(M)’ is called the opposite weight of ¢.

Given a normal weight ¢ on M, let e be the projection in M such that Me = n,, the o-strong closure,
and let f be the projection in M such that Mf = {x € M: p(z*z) = 0}. Then ¢ is semi-finite on eMe
and faithful on (1 — f)M(1 — f). The projection s(p) := e — f is the called the support of ¢.

Hence forth any weight on a von Neumann algebra is assumed to be semi-finite and normal.

4. LEFT HILBERT ALGEBRAS TO WEIGHTS AND BACK AGAIN

In this section we explore the correspondence between the full left Hilbert algebras of Section 1 and the
weights of the previous section.
Let 2 be a full left Hilbert algebra with completion $) and left von Neumann algebra M = R; (). Recall
m () = n Nnj, () =n. Nn}.
We then define
m; = nyny, and m, = nn,.
Next we will define a positive extended-real valued function ¢; on M as follows:

o) = { € if 2% =m(&), €€

oo otherwise.

Similarly, we define ¢, on M/, :

_ [ ml? ifyr =m(m), neA;
r(y) = { oo otherwise.

We work towards showing that these are semi-finite normal weights.

Lemma 4.1. In the above situation, m;" (resp. m}) is a hereditary conver subcone of My (resp. M, ).
Furthermore, n; and n,. are given by the following:
n ={reM:z*zem}, n.={ye M:y'yecmtl.

Proof. my is a self-adjoint subalgebra of M, so m?‘ is a convex subcone of M. Suppose we have 0 < b < a

for a € ml‘Ir and b € M. Writing a = Y-, }y; for z;,y; € n; we have
1 1
a=s(ata’) = @y +yiw) < Z vimi+yiy) € m

2 — 2
i=1

So upon replacing a with the last expression above we may assume b is dominated by Z?:l z;x;. By
definition of ny, x; = m(&;) with & € B for each i. Using Lemma 3.6.(ii), we can find s1,...,s, in the unit
ball of M so that xil/Q = s;a'/? and p = >or | sis; is the range projection s(a) of a. Set & = Y1 | s¥&;.

Then ¢ € 5 and
= Zsfﬂ'l(ﬁi) = Zsf&:z = Zsfsia% = pa? = aqZ.
i=1 i=1 i=1
Hence a'/? = m)(¢). Using Lemma 3.6.(i), choose s € M so that b'/? = sa'/2. Then

b? = sm(€) = m(s§) € ny.
Hence b = b'/2bY/2 € m", and thus ml is hereditary.
Now, let = € n,, then 2*z € m by definition of m;. Conversely, if z*z € m}, then |z| = (z*x)'/2 is
of the form |z| = m(§) for some £ € B as we showed above (i.e. let a = |z|). So if z = ulx| is the polar
decomposition of x, then we have x = um(§) = m(u) € ny.
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By symmetry we have the same result for n,.. O
For each ¢ € ) we define wi € M and wf € (M')} by
we(w) = (261, e M; wily) = (€| &), ye M.

Consider the following sets:

0= {wh:ine®, ||n(n) <1}
D = {w:neB, M) <1}

P, = {wi: £eB, m() <1}
0= {w: €€ B, |Im(€)] <1}

Lemma 4.2. Let S and Sy (resp. S’ and Sj)) denote the closed and open unit balls of M (resp. M'). There
exists a completely positive map 0 (resp. 0') from wy into MY, (resp. m, into M. ) such that

O(m(§)*'m(§)) =wg,  £€B
0 (m () me () = wy,  nEB
and such that
f(m; N S) =a,, f(mt N Sy) = @,.0.
o' (mf NS’ =, 0'(m;" NS = @0

Proof. The existence of # and ¢’ along with their formulas follow from a proof analogous to the one in Lemma,
3.8. Then the set equalities are obvious from the definitions. O

Corollary 4.3. The sets ;o and ®,.¢ are hereditary convex subsets of M} and (M')} respectively.

Lemma 4.4. The functions @, and @, are given by
wi(x) = sup{w(z): w e P10}, r e My
or(z) = sup{w(y): w € B, 0}, y € /\/l'+

Proof. We establish the formula for ¢; and the other to symmetry. Let ¢ be the function defined by the
right hand side of the first equation.

We know from Lemma 4.2 that ®; is upward directed, and hence ) is a normal weight on M. Given
a € m” we can write a'/2 = m(¢) with £ € A. We compute:

() = supfo(a): w € B0} = supfan | ): w € B, ()] < 1)
—sup { ot € %, Il < 1} =swwlm(©nlPs n € ¥, o) < 1)

= sup{||m- (NE|*: n € B, ||m,(n)l| < 1} = sup{[[&]|*: b € Sy N0} = [[€]]* = @i(a),

where we have used in the second to last equality the fact that S{ N n;l is upward directly and converges
strongly to the identity. Conversely, suppose 1(a) = A < 00, a € M. We need to show a € m?' in which
case the above argument will apply ¢(a) = ¢;(a). Define w/ on m, as follows:

we(y) = (a,0'(y)),  yeEm.
Since ¢’ is completely positive, w/, is positive and

[wh || = sup{w/ (y): y € m} NS} = sup{(a,0'(y)) : y € m;" N S} = sup{(a,w) : w € Py} = Y(a) = A < .

Hence w!, is bounded and we can extend it to the norm closure A, of m, as a positive linear functional, which
we continue denote w!,. For y € A, we have

jwa ()7 < llwg lwe (yy) = Awe (y7y)-
Hence for n € B’ we have

(e ()] < VA ()" e (1)) = VA(an | ) = VA

1
azn|l.



34 BRENT NELSON

By the Riesz representation theorem, there exists a vector & € [al/ 253} such that

1
wo(mr(n) = (aZn[€),  neB.
Then for each 7, € B’ we have

(a?n]a2¢) = (an | ¢) = wl(m(¢)"me(m) = (a7, (O)*n | §) = (a7 | 7, ()9).
But since
(06 € mr(Q)[a2 ] C [a*m ()] C a2 8],
this impiles a'/2¢ = 7,.()¢ for ¢ € B’. Hence £ is left bounded and a'/? = m(€) € n;. Consequently
a = (a*/?)? € m;" and ¢;(a) = ¥(a) by the previous argument. O
We establish the first of our two main goals in the section.

Theorem 4.5. If A is a full left Hilbert algebra with left von Neumann algebra M = R; (), then ¢; and
@ defined above give faithful semi-finite normal weights on M and M’', respectively, with the following
properties:

(i) The action of M on ), the completion of AU, is unitary equivalent to the semi-cyclic representation
T, 0f M on $H,, under the correspondence:

Uf = TNy, (ﬂ'l(g))a § € 5.
(ii) Identifying $ and $,, under the unitary U above, ¢, is the opposite weight of ;.
(iii)
My, = my, Ny, =1y,
= m7'7 ntpr = n'f’
eum(n)m(&) =E[n), &EneB
or(me(m)*m(€) =€ n),  &neB.

Proof. The previous lemma shows that ¢; and ¢, are normal weights. Also, since m?‘ generates M, ¢
is semi-finite. To reduce the number of subscripts, denote ¢; by ¢. Let {m,,b,,n,} be the semi-cyclic
representation induced by ¢. If &,& € B, then

(&1 [ &2) = w(m(&2) m(&1)) = (ne(mi(&r)) | e (mi(€2)))

follows from the polarization identity applied to the definition of ¢ = ;. Hence the map U in the statement
of the theorem can be extended to an isometry from $ onto $),, still denoted U. Also, it is clear that
UaU* = my(a) for a € M. If we identify $, with $ by U, then the above equation shows that m; and 7,
are inverses of each other. O

We now proof the converse to the previous theorem:
Theorem 4.6. Let ¢ be a faithful semi-finite normal weight on a von Neumann algebra M. Let
A, = 1y, NNG).
If we define an involutive algebra structure in A, in the following fashion:
Mo (@)Mp(Y) = np(zy) 2,y €ngNing,
77<p(33)u = 7750(37*)7
then U, is a full left Hilbert algebra such that
(i) mp(M) = Ri(Ayp);
(ii) if we identify M and Ri(2A,) via 7,, then the weight @; associated with A, agrees with the original
weight ¢.

Proof. 1f 2,y € n, N, then 1y, (2)n,(y) = np(2y) = 7, (7)1, (y), so that multiplication is left continuous
and m(n,(z)) = Ty(x). Hence m(Ay,) = my(n, N nY) so that m(2A,) generates 7,(M) as a von Neumann
algebra. Consequently, m;(2l,) is non-degenerate on $),, and therefore A is dense in §, since 7, (n, N n%)
contains an increasing net converging strongly to 1. Note that for z,y,z € n, N nf, we have

(Mo (2)06 () | 16(2)) = 0(z*zy) = (2" 2)*y) = e (V) | N (200 (2)) e = () | Np(2) 0 (2)) -
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It remains to show condition (c¢) in Definition ?7?.
Set
Py :={we MS: (14 €w < ¢ for some e >0} .
Recall that from the discussion following the proof of Theorem 3.12 that for each w € ®, ¢ there corresponds
an hy, € m,(M)’, with ||hy|| <1 and an n,, € £, such that
1
w@) = (mp(@)ny [ nw) ze€M,  hdny(r) =m,(x)n, = €ny,.
Now, for each wy,wa € @y 0, b € mp(M)" and = € ny, N0, we compute:
1 1
(nsa(x*) | hé, bnw,) = (hl‘il%(x*) | by ) = (ﬂ-w(x)*nm [ D1s) = (oo, | Ww(x)bnm)
= (Mo | 076 (2)Nws) = (Noy | DAGa15(2)) = (hE,0" Ny | 0 ().
Suppose {z,} is a sequence in n, N0y, such that
nll)ngo Ne(xn) =0 and nh_}n;o ne(xy) =& € Hy,

in norm, then the above computation shows that
(€ hd,bre,) = T (g (5) | 12,01,) = i oo (2", | 0p(0)) = 0
for every b € m,(M)" and wy,ws € Py, . Hence to show & = 0 it suffices to prove the linear span of
U {hég@o(/\/l)'nw2 D wi,ws € @@,0}
is dense in in ),. We compute for z € n, N n;;:
I

= p(z"z) =sup{w(z*z): w e Py} = sup{wa(x)anQ: w € @@,0}

= sup{Hhéma(gc)H2 TwE <I>%0} = sup { (hwnp () | np(2)): w e Py}

7, (2)

Since @, o is convex and the map: w — h,, € 7,(M)’, is affine, 1 is in the strong closure of {h,: w € @, o}

[WHY?]. Hence {héﬂrw(/\/l)'nw2 twy € <I>W7O} is dense in m,(M)'n,,,.

Now we prove that |J{m,(M)'n,: w e o} is total in H,. Set R to be the closure of the span of this
union. Then let e be the projection of £, onto R. By definition, R is invariant under 7,(M)’, hence
e € my(M) and (1 —e)n, =0 for every w € @, . Let f € Proj(M) be such that m,(f) =1 —e. Then

p(f) = sup{w(f): w € @y o} = sup {(7o(f)ne | 1)1 w € Py o} = sup {((1 = e)nw [ 1) w € Py 0} = 0.

Recalling that ¢ is faithful we see that f = 0 and hence e = 1, ergo R = $, and so the desired density is
established. Hence the g-operation is preclosed and 2, is a left Hilbert algebra.

1
We next show that 2, is full. From the equality 7, (2)n, = hdn,(x) we see that 7., is right bounded for
1 1
each w € @, and 7,(1,) = h3. Since hg is self-adjoint, 1, € 2, by Lemma 1.17. Set x = m(§) € m,(M)
for a left bounded vector £ € ), (so that 7, (z) = £) and compute:

p(z*z) = sup {w(z*z): w € Py} = sup { ||lanu||*: w € Py}
—sup {0 " w € B} = Il = el < .
Hence z € n, and ¢(z*z) = ||£]|%. Thus m(B,) C 7y (n,), where B, is the set of all left bounded vectors in
9. So from Lemma 1.17'.(ii") we have
m(RAy) Cm(AY) = m(By) Nm(B,)" Cmpng, Nny) = m(Ay,),

so that 2, = A{. Hence 2, is full.

Finally, if = uh € n, is the polar decomposition, then h = u*x € n, NnY, so that n,(z) = my,(u)n,(h) €
Tp(u)Ay, C By. Thus n,(x) is left bounded and m;(n,(z)) = 7, (z). Thus m(B,) = m,(n,). Now, for every
ren, =m;" (),

p(a"z) = 0, (@)|* = 1 (m(n,(2)) m(n,(2)) = iy (2) 7y (2))
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(the second equality follows from the definition of ;). Thus ¢ = ¢; o m, so that ¢ is identified with ¢; via
T (]

Lastly we convince the reader of the relevance of the above to any von Neumann algebra:
Theorem 4.7. Every von Neumann algebra admits a faithful semi-finite normal weight.

Proof. Let {w;: i € I} be a maximal family of normal positive linear functionals on a given von Neumann
algebra M with orthogonal support {s(w;)}. By the maximality, we have ), ; s(w;) = 1. We then set

‘P(x)zzwi(x)» reMy.
iel
Let J CC I mean that J is a finite subset of I, then

o(x) = sup {Zwi(x): J ccC I} .
ieJ

Hence ¢ is a normal weight. For each J CC I, set py = >, ; s(w;) € Proj(M). Then p; € m;’f and p;y 71,

so that ¢ is semi-finite. If ¢(x) = 0 for & € M, then w;(z) = 0 for every i € I, so that z'/%s(w;) = 0,4 € I;

hence z'/2 = 21/2 3" s(w;) = 3. 2/25(w;) = 0. Thus ¢ is faithful. O

5. MODULAR AUTOMORPHISM GROUP OF A WEIGHT

After way too many pages of what were essentially “preliminaries” we arrive what could be (but shouldn’t
be) described as the “meat and potatoes” of the theory.

Throughout this section all weights are assumed to be faithful, semi-finite, and normal unless stated
otherwise.

Given the previous section we now know how to build a left Hilbert algebra from a pair (M, ¢) consisting
of a von Neumann algebra and a weight. Then, given Section 1 we can consider the modular operator A
associated to this left Hilbert algebra. Presently we explore the connection between ¢ and A.

Definition 5.1. Let A be a C*-algebra, equipped with a one parameter automorphism group {o;: ¢t € R}.
A lower semi continuous weight ¢ on A is said to satisfy the modular condition for {o;} if the following
two conditions hold:

(i) p =¢pooy, tER;
(ii) For every pair z,y € n,Mng, there exists a bounded continuous function F;, , on the closed horizontal
strip D and holomorphic on the open strip I (where D is bounded by R and R + 4) such that

Foy(t) = plow(x)y)  and  Fpy(t+1) = p(yoi(x)), teR

Theorem 5.2. To each weight ¢ on a von Neumann algebra M there corresponds uniquely a one parameter
automorphism group {o:} of M for which ¢ satisfies the modular condition.

Proof. Let 2 be the full left Hilbert algebra corresponding to ¢, guaranteed by Theorem 4.6. Using the semi-
cyclic representation {m,,$,,n,} we identify M with m,(M) = R;(A). From Theorem 1.24 the modular
operator A of 2 gives rise to a one parameter automorphism group {o;} of M by the following:

oi(x) = Atz AT x € M.

Since 2 = 7, (n, N n%) and the {A”} act on 2 as automorphisms (by Theorem 1.24) it easy to see that
o¢(n, Nny) = n, Ny and hence oy leaves m,, globally invariant. Now, for §,7 € 2 we have

p(oe(mn) m(€))) = e(m(A"n) m(A"€)) = (A" | A'n) = (€] n) = ¢(m(n) m(E)).
Hence ¢ |, (22 is invariant under {o;} and by density ¢ itself is as well.
For &, € A set = m(§) and y = m;(n). We define the following function:

Fla) = (5" %¢|a%y).
Since &,m € A C DF, the vector valued functions:
Ea)=A"%¢  pla) =A%y
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are both, by Lemma 2.3, bounded holomorphic on D and continuous on D. Hence F is holomorphic in D
and bounded continuous on . We compute:

F(t) = (A"F¢[ A%y) = (€] A'n) = p(m(A"n) m(€)) = (oe(y")2);
F(t+i)= (A2 A [ A% Asp) = (A3 | AZAp) = (JAR Ay | JA3E)
= ((A")* | &) = p(m(©m(A™n)") = p(zor(y"))-
Hence {0} satisfies the modular condition.

It remains to show the uniqueness of {o:} so suppose ¢ satisfies the modular condition for another one
parameter automorphism group {o;} of M. Since ¢ is invariant under {o}} there exists a one parameter
unitary group {U(t)} on 2 satisfying

Ut)ne(z) =np(oi(x)),  z€mng,, teR.
Recall that [FIND A PLACE TO PUT FORMAL DEFINITION OF ONE PARAMETER UNITARY
GROUP] there is an implicit continuity condition when we speak of one parameter unitary groups, but
in our situation this follows from the continuity of the functions F; , in Definition 5.1. By Stone’s Theorem,
there exists a self-adjoint operator K such that U(t) = expitK. Set H := exp K, then we want to prove
that H = A, so that
e (op(2)) = Ut)n,e(z) = H'ny(z) = Any(2) = n,(0w(2)),

and hence o,(z) = o(x) for « € n,. Since n, generates M we’ll then know that o, = oy for all ¢ € R.

Now, {o}} preserves the *-operation in M (they are automorphisms after all), and this translates to
U(t)et = (U(t)€)* for each & € 2. By density we then obtain

UHDF=2F (UM =U@M)E, e
Therefore, for each ¢ € D* we have

|ate| = sen = lv@sel = Isvel = [atuwe

and for &, € ©F we get
(AZE | Ay) = (JATn | JARE) = (| €) = (U | U(D)EF)
= (UBF | (U1EF) = (SU(t)n | SU(1)E) = (AU (1) | AU (1))
or
(AE | n) = (U(-)AU)E [m),  &n € D

Hence A = U(t)AU(—t) for every t € R, implying that the spectral projections of A and {U(¢)} commute
so that we can conclude

AZU(t) =U()AZ, teR
Since we also know U(t) commutes with S = JAZ2, we also have that

JU(t) =U(t)J, teR.

Fix &, € D and take {&,}, {n,} C 2 converging to £ and 7, respectively, in the || - ||;-norm. For each n € N
let F, := Fr,(y,)*,m(¢,) from the modular condition of {o7}. Then we have

Fo(t) = @ (o3 (mi () ") mi(&n)) = (&n | Ut)0n);
Fu(t+1) = ¢ (m(&a)oi(m(na)") = (U )}, | €).

From the assumed convergence of {£,} and {n,} we then know that {F,(¢)} and {F,(¢t + i)} converge
uniformly in ¢ to the functions (¢ | U(t)n) and (U(t)n* | £€*) respectively. Hence from the Phragmén-Lindelof
Theorem yields the uniform convergence of {F,} to F := F, (n)*,m (¢) ON D. Thus F is continuous, bounded
on D, and holomorphic on I with boundary values:

Ft)=(E1U®N),  Fremet+)00O7F | 7).
Since U(t) commutes with A2 and .J, the second boundary value above becomes

Ft+1) = (Aég | A%U(t)n) . (6)
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Let K = fR A dE(X) be the spectral decomposition of K, then

U(t) = /R e dE(N).

Let E, := E([-n,n]). Since {E(\)} and A commute, we have E,D* C D, and D¢ := |J,—, E,DF is a core
for A2 because lim,, 00 (1 + A%)Enf = limy, 00 En(1+ A%)f for every ¢ € Dt Now, if £ € Df and n € Do,
then for sufficiently large n we have

n

Fa+o=/"aw“%mdmmm:/ Ao (¢ | dE(N) = (€ | HU (b))

—-n —-n

Comparing this to our previous computation in 6 we have
(at¢1atU@m) = €| HU(t), € €D, neDq.

In particular, for t = 0 we have (A2¢ | Azn) = (¢ | Hn). Hence A2D, C ©f and Hn = A for each n € Dg.
On the other hand, (1+ H)Do = J,_,(1 + H)E,®¥, and (1 + H)E,D* is dense in E,$,, so that D is
dense in D(H) with respect to the graph norm. Similarly, ®¢ is dense in ®(A) with respect to the graph
norm. In other words, ® is a common core for H and A, on which H and A agree. Therefore H = A as
needed. O

Definition 5.3. The one parameter automorphism group {o;} of M given by a weight ¢ is called the
modular automorphism group associated with ¢ and denoted by {o/}.

Henceforth we let A(D) denote the set of bounded continuous functions on the closed horiztonal strip D
which are holomorphic on D. The function F, , € A(D) in Definition 5.1 is called the two point function of
x and y.

Corollary 5.4. Let w be an isomorphism of a von Neumann algebra M onto another N. If ¥ is a faithful
semi-finite normal weight on N, then

o?" =rloo¥om, teR.
Proof. This follows from the uniqueness of modular automorphism group established in Theorem ?77. |

‘We now proceed onto the topic of the “centralizer of a weight.” Starting now, we only assume weights to
be semi-finite and normal (not necessarily faithful).
Fix a faithful weight ¢ on a von Neumann algebra M.

Definition 5.5. Let

My ={zeM:of(z) =2z, teR}.
Then M,, is a von Neumann subalgebra of M called the centralizer of ¢. We say that + € M and ¢
commute if z € M,,.

Our initial goal is to establish criteria in terms of ¢ for an x € M to commute with ¢. The terms defined
in the following have been used above, but only with the implicit algebraic conditions. Here we add an
analytic condition and this is assumed henceforth.

Definition 5.6. We mean by a one parameter automorphism group {o;} of M a homomorphism
o:t € R gy € Aut(M) from the additive group R into the group Aut(M) of automorphisms of M with
the continuity requirement that for every z € M and w € M, the function ¢ — w(o:(z)) € C is continuous.
An element x € M is said to be entire if the function ¢ — o(x) € M can be exteneded to an M-valued
entire function over C. In this case, the value at z € C will be denoted by o,(z). We denote by M7 the set
of all entire elements of M.

Lemma 5.7. Let {o:} be a one parameter automorphism group of M.
(i) M9 is a o-weakly dense x-subalgebra of M;
(ii) If x,y € M2 and o, € C, then
oa(zy) = 0a(®)oa(y),
Oatp() = 0a(05(7)) = 0p(0a()),
oz(x) = oo(x")".
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Proof.
(i): For each z € M7, we set

7o) = 7505(2) =l (Gaselw) ~ 0u(a)).

For each z,y € M7, we have

%(Ua+e($)0a+e(y) = 04(7)0a(y)) = = ([0ate() = 0a(2)]0ate(y) + 0a(®)[Tare(y) — Taly)])

0, (@)0a(y) + a(@)74 ().
Thus o € C — 04 (x)0a(y) € M is entire. Hence zy is entire, zy € M7, and o,(zy) is an extension
of o¢(zy). On the other hand, since o¢(x)o¢(y) = o(xy) we know by the uniqueness of the extension
that o4 (2y) = 0o ()04 (y). Thus MZ is a subalgebra of M.

To see that MY is closed under taking adjoint, we note that if a — o, (x) is entire, then a —
oa(x)* is entire. This latter function extends ¢t — oy(z)* = o4(x*) so we get that z* € M%, ergo
M2 is a x-subalgebra of M and og4(z) = o4 (x*)*.

Given x € M7 and s € R, we claim that o5(z) € M?. Indeed, o1(0s(z)) = 0¢4s(x) is extended by
the entire function o444(x). Also, the uniqueness of the holmorphic extension we obtain o, 0 05 =
Oa+s- This also provides us with an extension for ¢ — o5 00¢(x) = 0s44(2) and hence we also obtain
Osta = 05 0 04. Now, fix a € C, then og44 is an extension for ¢t — 04(04(z)) = orra(x), so that
oa(z) € MZ and 05004 = 0pta-

It remains to show MY is o-weakly dense in M. For each x € M, set

z, () = ﬁAeV(ta)Qat(x) dt, v>0, acC.

For each w € M., we have

slan(@) =2 [ ilonto),) i

The boundedness of the function ¢ — w(ot(z)) yields the analyticity of the right hand side as
a function of a. Hence z,(-) is an M-valued entire function which extends the function: t —
oi(z4(0)) = x,(t). Thus z, = z,(0) € MJ. By Lemma 2.4, {x,} converges o-weakly to x as
v — oo. Hence MY is o-weakly dense in M. O

A=

Given the modular autormorphism group {¢{} of a faithful weight ¢, we will use M¥ (rather than M?")
to denote the set of entire elements. Let 2l and 2y be the left Hilbert and Tomita algebras, respectively,
corresponding to ¢ through the constructions in Sections 4 and 2. We set

awznwﬁn;:m(m), CIQZWZ(Q[()).
From Definition 2.1.(a), we see that ap C M¢ and
aa(m(€) =m(A™E), &€ Ay
Lemma 5.8.

(i) a, is an ME-bimodule.

(i) my, is an ME-bimodule.

(iii) ag is an ideal of M.

Proof.

(i): Since a, and M¢ are both x-algebras, it suffices to prove a, is a left M¥#-module. For this, it is also
sufficient to prove Mga, C n, since ny, is a left ideal and a, C ny,. Given a € Mg and z € a,,
having az € 1, is true iff az = b* for some b € n,, iff (azx)* = b € ny, iff ny(ax) € D! = D(A/?)
(since S = JAY?). Now,

A'ng(az) = n,(0f (ax)) = of (a)n, (0] (2)) = of (a) A¥ 1, ().
We know 7, (z) € D(A'/2) because = € a,, and thus applying Lemma 2.3 (to H = A), we see that
t— Aitnw(x) can be extended to an h-valued holmorphic function on the horizontal strip bounded
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by R and sz%, continuous on the closue. But o7 (a) extends to an M-valued entire function and so
their composition, which is equivalent to A“W (az) by the above computation, is holomorphic on the
strip and continuous on its closure. Hence Lemma 2.3 applied again yields that 71, (az) € D(A/2).

(ii): Let a € M¥ and x € mjg = p,. Then z7 € n, N ng, since it is self-adjoint and (x%)ac% =2 € Po.
So by part (i), azz € n, Nny and hence ax = (ax?)zz € m, = ngin,. As m,, is spanned by its
positive elements we conclude that it is a left M¥-module. That it is also a right module follows
from mya = (a*my)*.

(iii): As ag is a x-algebra it suffices to show it is a left ideal. Let a € M¥ and = € ag. Then x = m(&)
for some & € Ay and azx = m(af). Since A%al = of (a)A"¢ extends to an §) valued entire function
(because A€ does and of (a) extends to an M valued entire function) aé € Ay =,z D(A™) by
Lemma 2.3. Hence azx = m(a&) € ag. O

Lemma 5.9.

(i) If a € M is a multiplier of my, in the sense that am, C m, and mya C my,, then for each x,y € ag
there exists an entire F' € A(D) such that

F(t) =e(of (a)zy"),  F(t+1i)=p(zy o] (a)). (7)
(i) If a € MY and z € my,, then the function F. defined by ¢(c€(a)z) is entire and bounded on D, and
further satisfies the condition:
F.(t) = ¢(of(a)z),  Fu(t+1i) = (207 (a)). (8)
Proof.
(i): Set
F(a) = (aA™"n,(z) | A7, (y)),  aeC.

By the assumption on = and y, F' is an entire function and belongs to (D). Now, z € ap C m,, and

since of leaves m,, invariant this means o”,(z) € m,,. Consequently ac?,(z) € m, by assumption on

a, and so of (a)x € of (m,) = my,. Hence o7 (a)n,(z) = n,(0f (a)z). Using mya C m, and a similar
argument we can also show o7 (a*)y € my, so that of (a*)n,(y) = ne(cf (a*)y). Now, we compute:
F(t) = (aA™"ng(x) | A7, (y)) = (0F (a)ne(2) | 1,(y))
= (At (o (@)2) | AFng()) = (Sne(v) | S (0f ()2) = ¢ (of (a)ay")
F(t+i) = (@A™ g (@) | A ny(y) = (A, () | A2of (a*)n,(y))
= (Snp(af (a")y) | Sne(x)) = ¢ (xy*of (a)).
(ii): It suffices to assume z = zy*, x,y € a, since m,, spans m, linearly and z — p(0%(a)z) = F.(«) is
linear in z. Now, the previous lemma implies 7, (bx) € 2 C D(A/?) for b € M¢ and

o (D) A"y, (x) = A, (bx), o€ ﬁ%.

)
)

In particular, applying this to b = ag (a) and o = f%,

Arof(ay(z) = of_, (@)A%n,(z),  FeC.

We compute:
F.(0) = p(o(@)ay") = (Sn,(y) | Sna(05(a)a))
= (Abog(amy(@) | Abn, () = (o7
Hence F, is entire and bounded on D /5. Also,
Ft+i) = (of (A3, (@) | Aln,(y)) = (A1n,@) | 0f_,(a)A 0, ()
= (Atna(a) | Atof (@) = (Snp(of (a*)y) | Sna(x))
= ¢ (ay"of (@) = o207 (a)).

We can know characterize the centralizer of a weight.
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Theorem 5.10. Let ¢ be a faithful semi-finite normal weight on a von Neumann algebra M. A necessary
and sufficient condition for an element a € M to belong to the centralizer M, of ¢ is that

(1) a is a multiplier of my, i.e., am, C m, and mya C m,;

(i) p(az) = ¢(za), z € m,,.
Proof. First suppose a € M. Then t — o7 (a) = a is extended by the constant entire function o — a.
Hence a € M¢. Since m, is an M£-bimodule, a is a multiplier of m,. For z € m,, part (ii) of the previous
lemma gives rise to an entire F, € A(D) satisfying (8). But F(t) = ¢(az) for all ¢ € R and hence is constant
everywhere. In particular p(az) = F,(t) = F,(t + i) = p(za).

Conversely, suppose a € M satisfies (i) and (ii) above. Then for any z,y € ap we can produce an entire
F € A(D) satisfying (7). Then
F(t) = poof(ac?,(zy")) = plac?,(xy")) = p(o?(xy")a) = p(zy"of (a)) = F(t + 1),

so F has period i. But F is bounded on D and entire, hence it is constant by the Liouville theorem. From
the construction of F' we obtain

(@A™ g (x) | AT g (y)) = (ane (@) | Ang(y)), @,y € ao,
so that
((0f (a) = a)my(2) | Any(y)) =0, @,y € ao.
The density of n,(ag) = A and Ay =g in H, imply o7 (a) = a for all t € R. Hence a € M,,. O

We next explore how perturbing ¢ by a positive self-adjoint operator affiliated with M., affects the
modular automorphism group. Given a positive self-adjoint operator h on a Hilbert space ), we define

he = h(14¢h)t, €>0.
Then h, is bounded and self-adjoint. For two such operator h and k on $) we write h < k if there exists

€ > 0 such that h. < k.. This is equivalent to the fact that h. < k. for all € > 0 via the functional calulus
(fe(w) := 17 is monotone increasing for all € > 0). But then this is in turn equivalent to

D)o D(k*)  and  [hEg| < kFE), £ €DK,
Fix a faithful weight ¢ on M.
Lemma 5.11. For each h € M;g, if we set
enlz) = p(hiah?),  xeMy,
then @y, is a weight on M. The map: h — @y is a monotone increasing [affine??] map.

Proof. By Theorem 5.10, h is a multiplier of m, so that oy, takes finite values on mj,j and hence is semi-finite.
The normality of ), follows from that of .
If h,k € M}, then by Lemma 3.6 there exists u,v € My, such taht [|ul <1, [Jv]| <1 and

ht =u(h+k)2, k*=v(h+k)?,  uwutvv=sh+k),
where s(h + k) is the range projection of h + k. Suppose that ;1) () < oo for some € M. Then
y:=(h+k)iz(h+k)* €m].

Then uyu*,vyv* € my, since u,v € M, are multipliers of m,. But then condition (ii) in Theorem 5.10
implies

en() + k(@) = pluyu” + vyv”) = e(u'uy + v*vy) = o(s(h + k)y) = oY) = Pn4r) (7).
Now suppose @y (), pr(h) < co. Then

(h+k)2a(h+k)? = lin (h + & + ) 2 (h+k)z(h+k)(h+k+e) 3
< 2lim(h+k + €)% (hah + kak)(h + k+¢) 3
€—>

=2 (u*h%xh%u + v*k’%xk‘%v) ,
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so that by Lemma 5.8 @41y (2) < oo. But then the preceding arugment implies @54 1) () = ©n(z) +@r(x).

Thus ¢p, + ¢ = O(htk)-
If h <k, then k =h+ (k— h), so we have

Yk = Pn + Pk—h) = Ph-
U

Lemma 5.12. Let h be a positive self-adjoint operator affiliated with the centralizer My of ¢. Then the
right hand side of the following:

11
or(z) = lim ¢ (h? a:hez) , x € My, 9)
e—0
converges in [0, 00] and gives a weight @, on M. A necessary and sufficient condition for ¢y, to be faithful is
that h is non-singular, i.e. the range of h is dense in $), or equivalently h& # 0 for every non-zero & € D(h).

Proof. The inequality, 0 < € < 4, implies hs < h, so that {¢; : € > 0} is monotone increasing by the
previous lemma in the sense that e \, 0 gives ¢, 7 ¢5. Hence ¢ = sup ¢y, = lime o ¢, makes sense and
is linear on M by the linearity of each ) . The normality of ¢}, follows from that of each ¢y, .

Now, we prove the semi-finiteness of ¢;. Let e, be the spectral projection of h corresponding to the
interval [0,n]. By Lemma 5.8, e,mye, is o-weakly dense in e, Me,, so that |J , e,mye, is o-weakly
dense in M [I THINK THIS PROCEDES BY: since h is affiliated with M, e, € M, C M¢ whence
enMye, C m, by the lemma mentioned. The o-weak density comes from the fact that since ¢ is semi-finite,
mt = p, generates M.] But ¢, takes finite values on e,mye, because he, € M¥, which yields the semi-
finiteness of @p. If e = s(h) is the range projection of h, then ¢p(1 —e) =0, so that the faithfulness of ¢y,
is equivqalent to e = 1. O

Lemma 5.13. Ifh € ./\/l;r is invertible, and if x € ag and y € a,,, then the entire function F':
F(a) = (WA g, (2) | Sh™"n,(y))
belongs to A(D) and satisfies the boundary conditions:
F(t) = ¢ (hh'of (2)h~"y) ,

F(t+1i) = ¢ (hyh'of (x)h™") .

Proof. That F' is entire is clear from z € ay. We compute
F(t) = (WA, (2) | Sh™ 1, (y)) = (BT A (af (2)) | 0, (y"h™))

= (A2ng(of (2)) | AP (B "1y " ki) = (Snp (B 1y ") | S (o (x)))
= (e (W™ yh™ 1) | np(of (2)")) = w(of (x)h™"yh™"™*") = p(hh™af (x)h™"y);
(R A%y () | Sh™ e (y)) = (W0, (af (2)) | Sh™ 1, (y))
= p(h™"lyhof () = p(hyh* o, (x)h ™)

F(t+1i)=

O

Lemma 5.14. If h € M‘*‘ is wnvertible, then the modular automorphism group {at Y of ¥ := pp is given by
the following:
ol (x) = h''of (z)h ™", reM, teR.

Proof. Since h is a multiplier of m, we have
my=h"Tmyh"% Cm,,  and  my=h 2hImyhIhTE Cmy,

so that m, = my, and n, = ny. Let 2,y € ay and let {z,} C ap be a sequence such that lim, ||, (z) —
Ny (xy )|l = 0. From the previous Lemma we have a sequence of entire functions {F,} C A(D) such that

Fy(t) = p(hh'of (za)h™"y) = (o (W h"h) | A, (a7,)),
Fu(t +1) = p(hyh"of (za)h") = (A0, (wn) [ 1, (h"y"h'"h)).
But since the convergence

lim || A" (ng(2) = n,(2))]]; = 0

n— oo
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is uniform in ¢ € R, so the sequence {F,,} converges uniformly on the boundaries R and R + i of D. So the
Phragmén-Lindelof theorem implies that {F,} converges to an F' € A(D) whose boundary values are given
by:

F(t) = lim Fult) = (1o(hghi'h) | ,(0f (%)) = & (R0 0f (2)h " "yh? ) = 0 (hi'af (@)h~"y) s

n—sco
F(t40) = Tim ot +i) = (np(of (2)) | mp(h="y"hR) = o (hyh?of (w)h~*h%) = 6 (yh“of (2)h ).
Hence hitof (x)h =% satisfies the modular condition for 1. We also note that
G P (@)h) = ¢ (R R af ()h~"hY) = p(hot (@) = p(of (ha)) = @(he) = v(x).
So by the uniqueness of the modular automorphism group we obtain Uzp () = h¥tof (z)h . (]
We expand this result to positive self-adjoint operators affiliated with M.:

Theorem 5.15. Let ¢ be a faithful semi-finite normal weight on a von Neumann algebra M. If h is a non-
singular positive self-adjoint operator affiliated with the centralizer M, of v, then the modular automorphism

group {af’} of the faithful weight 1» = @y, given by (9) is of the form:
of (z) = hitaf (x)h ™", reEM, teR.

Proof. Lemma 5.12 implies that v is a faithful weight. For each n € N, let e, be the spectral projection
of h corresponding to the interval [2,n]. Then the restriction of ¢ to M., (= e,Me,) is a faithful weight
on M., whose modular automorphism group is merely the restriction of {o7} to M., . Hence the previous
lemma implies that if z € M., then

of (z) = (heil)of (z)(hen) ™™ = h''of (x)h ™",  teR.
Hence this formula holds for all z € |J.2_, M., , which is o-weakly dense in M. O

n=1
6. THE CONNES COCYCLE DERIVATIVE

The last few theorems of the previous section showed how perturbing a weight resulted in a simple
relationship between the two modular automorphism groups, namely conjugating by a unitary group. The
major result of this section (and in fact this could be considered the first major result in these notes) will
show that given any two faithful, semi-finite, normal weights ¢ and 1, their modular automorphism groups
differ by conjugation by a unitary.
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